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Abstract: We explore various aspects of the motion of heavy quarks in strongly-coupled

gauge theories, employing the AdS/CFT correspondence. Building on earlier work by

Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass

quark in N = 4 super-Yang-Mills, both in vacuum and in the presence of a thermal

plasma. In the former case, we notice that the application of an external force modifies

the dispersion relation. In the latter case, we find in particular that when a static heavy

quark is accelerated by an external force, its rate of energy loss is initially insensitive to

the plasma, and there is a delay before this rate approaches the value derived previously

from the analysis of stationary or late-time configurations.

Following up on work by Herzog et al., we also consider the evolution of a quark and

antiquark as they separate from one another after formation, learning how the AdS/CFT

setup distinguishes between the singlet and adjoint configurations, and locating the tran-

sition to the stage where the deceleration of each particle is properly accounted for by a

constant friction coefficient. Additionally, we examine the way in which the energy of a

quark-antiquark pair moving jointly through the plasma scales with the quark mass. We

find that the velocity-dependence of the screening length is drastically modified in the

ultra-relativistic region, and is comparable with that of the transition distance mentioned

above.
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1. Introduction and summary

1.1 Brief overview of earlier work

In the last couple of years, an intense research effort has been directed toward the use of the

AdS/CFT correspondence [1 – 3] to study parton energy loss in strongly-coupled thermal

plasmas. This endeavor is motivated mostly by the quest to understand the quark-gluon

plasma (QGP) [4] produced at RHIC [5] and LHC [6], and was stimulated by the pioneering

works [7 – 10], which were in turn encouraged by the success of the earlier viscosity calcu-

lations [11, 12].1 The phenomenological literature on energy loss is enormous; for reviews,

see, e.g., [14, 15].

1Recently it has been argued [13] that, at least at weak coupling, there in fact exists a direct link between

viscosity and jet quenching.
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The drag force experienced by a heavy quark traversing an N = 4 super-Yang-Mills

(SYM) plasma was determined in [7, 8], via its dual description as a string moving on

an AdS-Schwarzschild background. The closely related diffusion coefficient was obtained

independently in [9]. These seminal papers have been generalized and elaborated on in a

vast number of posterior contributions [16 – 23], including in particular comparisons with

the corresponding weakly-coupled results [24], as well as extensive analyses of the energy-

momentum tensor which paint a detailed and beautiful picture of the directionality of

energy flow away from the moving quark [25].

A second line of development originated from the work [10], whose authors proposed a

recipe for the jet-quenching parameter q̂ used in some phenomenological models of energy

loss [14], and employed it in the context of N = 4 SYM. Their calculation has been

extended in a number of directions in [26, 17, 27], but also questioned in various ways

in [18 – 20, 28 – 30].

A third line was initiated in [32, 28], which studied mesons moving through an N = 4

SYM plasma and obtained the corresponding quark-antiquark potential and screening

length, using the dual portrayal in terms of a string that moves on an AdS-Schwarzschild

background and has both of its endpoints on the boundary. As was emphasized in [32], the

outcome would be expected to have implications for the issue of quarkonium suppression in

the QGP. Related results were obtained independently in [31], which determined the spec-

trum of spinning mesons in the confining chiral gauge theory dual to the Sakai-Sugimoto

model [33]. Various interesting extensions and refinements of these calculations have been

reported in [21, 22, 34 – 40].

A notable feature is that, in contrast with the quark probes considered in [7 – 10], and

the gluon probes studied in [18, 23], mesons do not feel a drag force as they move through

the plasma [31, 32, 28]. This is because they are color-neutral, and therefore incapable

of setting up the long-range gluonic field profiles that could transport energy away from

them.2 Indeed, in [18, 22] it has been shown that the other obvious color-neutral probe,

the baryon, likewise experiences no drag.

Besides the transport and jet quenching properties of the plasma, there have also been

interesting studies of photoemissivity [43] and deep inelastic scattering [44, 40]. Some of

the topics we have briefly enumerated here have been reviewed in more depth in [45, 46].

1.2 Motivation and main results

Naturally, the initial papers [7 – 10, 32, 28] carried out their calculations under a number

of simplifying assumptions. First and foremost among these is of course the use of an

N = 4 SYM plasma as a toy model for the real-world QGP. A number of extensions to

other theories that are in certain ways closer to QCD have already been cited above, and

a few others can be found in [47]. The issue of how best to compare the N = 4 SYM

and QCD parameters was discussed in [48]. Also important is the restriction to an infinite

static plasma. Efforts to examine the case where the plasma is expanding and/or has a

finite spatial extent have been made in [49].

2The color field profile set up by a meson has been explicitly determined at zero temperature in [41, 42].
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The plasma produced at RHIC or LHC has in addition a finite temporal extent, so

another issue that could be significant is the limitation of the energy loss computations [7 –

10] to the stationary or late-time regime. The actual drag coefficient might be expected

to differ from the value obtained in these works in a situation where the quark moving

through the plasma is accelerating, or in the initial period following its production within

the thermal medium. This point has been emphasized from the phenomenological perspec-

tive (in the context of collisional energy loss) in [50], where it was argued that, after a

quark-antiquark pair is produced, there exists a significant delay before the rate of energy

dissipation coincides with the result relevant for the stationary case. Later works [51] have

called into question the actual duration, but not the existence, of this retardation effect.

The estimates in [50, 51] are based on perturbative calculations, so it is interesting to

inquire into this effect in the strongly-coupled systems available to us through the AdS/CFT

correspondence. It was this question that got us started on the investigation that led to the

present work, which over time has expanded toward various other fronts. For simplicity,

we have carried out our calculations in the context of an N = 4 plasma, but we expect

most of our qualitative conclusions to apply more generally.

Now, of course, the restriction in [7, 8] to the stationary and asymptotic cases was not

made gratuitously, but was necessary in order to gain analytic control on the problem of

energy loss. Away from these regimes, the evolution of the quark in the thermal plasma,

or equivalently, of the string on the AdS-Schwarzschild geometry, is complicated, and one

must resort to a numerical analysis (aspects of which were explored already in [7]). As we

will examine closely in due course, the interpretation of the outcome of such an analysis

is encumbered by several difficulties, chief among which is our ignorance of the thermal

dispersion relation for the quark.

In section 2 we will gain some perspective on these issues by turning off the temperature

T , and analyzing first the evolution of an isolated quark in vacuum, which is of interest

in its own right, and easier to interpret because in this context the form of the dispersion

relation is fixed by Lorentz invariance. We begin in section 2.1 by reviewing a remarkable

paper by Mikhailov [52], who constructed an analytic embedding for the string dual to an

infinitely-massive quark in N = 4 SYM that follows an arbitrary timelike trajectory, and

extracted from it a rate of energy loss, eq. (2.9), which turned out to agree with the Lienard

formula from classical electrodynamics! In the derivation of his result, Mihailov disregarded

a total derivative, which we show in (2.10) to give precisely the expected dispersion relation

for the quark. From the results of [52], then, we are able to draw two important lessons:

first, that, at any given time, the energy of the string includes not only the portion intrinsic

to the quark, but also the part that has been radiated by the quark throughout its previous

history; second, that the quark’s dispersion relation arises from a total derivative that ends

up being evaluated at the string endpoint.

It is natural to wonder how Mikhailov’s results generalize to the case where the quark

has a finite mass, which requires the introduction of probe D7-branes on which the string

can end [53]. We examine this issue (still at T = 0) in section 2.2. Interestingly, we discover

that the resulting quark dispersion relation, eq. (2.19), as well as the rate of energy loss,

eq. (2.18), depend on the external force F exerted on the quark, or equivalently, on the
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string embedding parameter X ′, which in the gauge theory controls the shape of the ‘gluon

cloud’ surrounding the quark. The dependence is such that the energy and momentum

of the quark reduce to the familiar expressions when F → 0, and on the other hand

diverge as the force approaches its critical value (i.e., the value beyond which F would be

strong enough to nucleate quark-antiquark pairs out of the vacuum). We finalize our zero-

temperature analysis in section 2.3, noting that the process of energy loss is accompanied

by the formation of an event horizon (and a stationary limit curve) on the string worldsheet,

as depicted in figure 1.

Armed with the intuition afforded to us by Mikhailov’s construction, we proceed in

section 3 to the finite-temperature case. In this setting, we are of course limited by the

fact that the general solution to the string equation of motion is not known analytically.

Nonetheless, we argue that Mikhailov’s method should admit a T > 0 generalization, and

are able to show in section 3.1 that this is indeed true for the only thermal solution that is

thus far available in closed form, which corresponds to the stationary quark configuration

studied in [7, 8]. The resulting dispersion relation, seen in the second and third line

of eq. (3.7), contains a novel feature that we argue to apply for all finite-temperature

configurations, including the quark at rest, eq. (3.11): it receives a contribution not only

from the string endpoint located on the D7-branes, which is directly dual to the quark, but

also from the endpoint located at the black hole horizon, which, as we explain, encodes the

initial conditions for the joint quark + plasma system.

In section 3.2 we consider the more general case where the quark accelerates within

the plasma. After reviewing the work done in this context by the authors of [7], we pick

up precisely where they left off, integrating the string equation of motion numerically for

an initially static quark that is accelerated by an external force over a finite period of time

and is thereafter released. As shown in figures 2, 3, 4, we find that under such conditions,

and for values of the mass in the neighborhood of the charm quark, there exists a period

after release where the quark dissipates energy at a rate that is substantially smaller than

the stationary/asymptotic result (3.10) obtained in [7, 8]. Additionally, as seen in figure 6,

the rate of energy loss in the initial stage where the quark is pushed by the external

force can be almost completely accounted for by the generalized Lienard formula (2.18),

describing radiation in vacuum. In (3.25) and the paragraphs immediately following, we

discuss the form of the thermal dispersion relation for the quark subject to the above initial

conditions, incorporating the F -dependence expected from our zero-temperature results,

and explaining in detail the relation to the relativistic expression (3.19) proposed in [7]. In

section 3.3 we then carry over the discussion of the worldsheet black hole from section 2.3

to the T > 0 context, obtaining a time-dependent analog of the Schwarzschild black hole

encountered for the stationary case in [19, 20], as schematized in figure 7.

Having explored in some depth the effect of the acceleration on the rate of energy

loss for an isolated quark, in section 4 we introduce the other element of realism whose

importance was highlighted by the phenomenological studies [50, 51], and examine a quark

that is produced together with its corresponding antiquark at some finite time within the

thermal medium. The gravity description of this system involves a string with both of its

endpoints on the D7-branes, at initially coincident positions. As we review in section 4.1,
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an initial exploration of this type of configuration was carried out in [7]. In section 4.2

we show how the one-parameter family of initial conditions considered in that work can

be generalized to describe situations with vastly different patterns of excitations for the

initial gluonic fields, and more importantly, to the case where the newly-formed quark

and antiquark transform in the adjoint instead of the singlet representation of the color

gauge group. Curiously, we find that it is only in the adjoint case that the initial quark

velocity v0 is freely adjustable. For the singlet case, as in [7] one must necessarily have

v0 = vm, where vm is the velocity (4.11) that appeared in different manifestations in the

works [31, 32, 28, 19, 20], and on the string theory side of the duality corresponds to

the proper velocity of light at the location of the string endpoint [35]. This identification

strongly suggests that vm should be a limiting velocity, as is implicit in at least [35, 19, 20],

and is discussed more explicitly in section 4.3 (as well as in the very recent works [39, 30],

which appeared while this paper was in preparation).

In section 4.4 we study the transition of the q-q̄ pair to the asymptotic regime described

by a constant friction coefficient, which as shown in figure 10 applies uniformly to all

different types of initial conditions. For singlet configurations, the initial evolution of the

quark is of course drastically affected by the presence of the antiquark. In figure 11 we

determine the velocity dependence of the transition distance beyond which the quark is

effectively in the asymptotic regime. For adjoint configurations, on the other hand, the

interactions between the quark and antiquark are suppressed at large N , and so the two

members of the pair evolve independently from the start. In this case we find that the

transition distance is essentially zero.

A natural question is whether the transition to the asymptotic regime occurs right

after the quark and antiquark are screened from one other by the plasma. This requires

a determination of the corresponding quark-antiquark potential, and more specifically the

screening length, a problem that we turn to in section 5. After reviewing and comparing

in section 5.1 the results obtained for infinitely-massive quarks in [32, 28], we generalize

to the case of finite mass, first at zero temperature in section 5.2, and then at finite

temperature in section 5.3. The resulting potentials are shown in figures 13, 14. As

expressed in (5.8), (5.12), (5.18), they are found to be linear instead of divergent when the

quark and antiquark approach one another, signaling the fact that the color sources in this

case are no longer pointlike.

In the finite temperature case, the potential implies the velocity-dependence of the

screening length Lmax presented in figures 15, 16. As seen there, compared to the infinitely-

massive case examined in [32, 28], there is a drastic modification of the behavior at high

velocities, which are now bounded by vm instead of 1. The v-dependence near this limit can

be determined analytically and takes the form (5.21), instead of the formula (5.4) obtained

in [32]. Over the whole range 0 ≤ v ≤ vm, and for masses similar to the charm quark, the

behavior can be relatively well approximated by (5.19), which is the obvious generalization

of the fit (5.2) proposed in [28].

We end the paper by comparing in section 5.4 the screening length against the transi-

tion distance determined in 4.4. For singlet configurations, we find that the magnitude and

velocity-dependence of these two separations are comparable, as shown in figure 17. Notice
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that this is in spite of the fact that the two relevant string configurations are rather differ-

ent. A similar statement can be made for adjoint configurations, where both the screening

and transition lengths are essentially zero. We conclude then that, for q-q̄ pairs created

within the plasma, the transition to the asymptotic, constant-drag-coefficient regime takes

place immediately after the quark and antiquark lose contact with one another. That is to

say, there is no intermediate stage where the quark and antiquark decelerate independently

from one another at a rate that differs substantially from the asymptotic result of [7, 8].

Our analysis in section 3.2 demonstrates that the gluonic fields around a quark can be

disturbed by the application of an external force, to the point of producing a significant

modification of the energy dissipation rate in the period immediately following release.

By analogy with the results we obtained for singlet quark-antiquark configurations in sec-

tion 4.4, we interpret this to mean that the quark has to escape far enough from the

disturbed region in order to be screened from its effect. In any event, given that the actual

experimental situation resembles the setup of section 4 much more closely than that of sec-

tion 3.2, the main overall lesson for QGP phenomenology would appear to be that, beyond

an initial period which is controled by the screening length, and where the evolution can be

modeled relatively well as taking place in vacuum (and, as such, would be present also in

proton-proton collisions), the stationary/asymptotic rate of energy dissipation determined

in [7 – 9] gives a good approximation to the actual time-dependent dynamics.

It is worth emphasizing that the inferences made in this paper regarding dispersion

relations and energy loss rates are based on the natural split achieved in [52] of the total

energy of the string. The latter is conserved on the fixed AdS-Schwarzschild background,

but would of course decrease steadily if we take into account the gravitational (and dila-

tonic, etc.) radiation given off by the string in the course of its evolution. Through the

GKPW recipe for correlation functions [2], it is this radiation (or, more precisely, the full

metric perturbation produced by the string), evaluated at the AdS boundary, that deter-

mines the expectation value of the gauge theory energy-momentum tensor. As has been

meticulously studied in [25], this tensor contains not just the gross information about the

total energy loss rate, but even the fine details about the directionality of the flow and the

relative weight of the various dissipation channels. It would therefore be very interesting

to examine more closely this link between dissipated energy as encoded on the string and

on the gravitational field ultimately generated by it.

2. Single quark evolution: zero temperature

To analyze the motion of heavy quarks in a strongly-coupled N = 4 SU(Nc) SYM plasma

with coupling gYM and temperature T , one must follow the evolution of open strings that

end on a stack of Nf D7-branes [53] living on the (AdS-Schwarzschild)5 × S5 geometry

ds2 = Gmndx
mdxn =

R2

z2

(

−hdt2 + d~x2 +
dz2

h

)

+R2dΩ5 , (2.1)

h = 1 − z4

z4
h

,
R4

l4s
= g2

YMNc ≡ λ , zh =
1

πT
,
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where ls denotes the string length. In our work the string will be taken to lie at a fixed

position on the S5 (consistent with the corresponding equations of motion), so the angular

components of the metric will not play any role. The D7-branes cover the four gauge theory

directions t, ~x, and extend along the radial AdS direction up from the boundary at z = 0 to

a position where they ‘end’ (meaning that the S3 ⊂ S5 that they are wrapped on shrinks

down to zero size), whose location z = zm is related to the quark mass in a way that we

will specify below.

From the gauge theory perspective, the introduction of the D7-branes in the back-

ground (2.1) is equivalent to the addition of Nf hypermultiplets in the fundamental repre-

sentation of the SU(Nc) gauge group, breaking the supersymmetry down to N = 2. These

are the degrees of freedom that we refer to as ‘quarks,’ even though they include both spin

1/2 and spin 0 fields. For Nf ≪ Nc, the backreaction of the D7-branes on the geometry

can be sensibly neglected; in the field theory this corresponds to working in a ‘quenched’

approximation which disregards quark loops (as well as the positive beta function they

would generate).

The string dynamics follows as usual from the Nambu-Goto action

SNG = − 1

2πα′

∫

d2σ
√

− det gab ≡
R2

2πα′

∫

d2σLNG , (2.2)

where gab ≡ ∂aX
m∂bX

nGmn(X) (a, b = 0, 1) denotes the induced metric on the worldsheet.

In the static gauge σ0 = t, σ1 = z, and for motion and deformation of the string purely

along direction x ≡ x1, the non-zero canonical momentum densities Πa
µ ≡ ∂LNG/∂(∂aX

µ)

are given by

Πt
t = − hX

′2
+ 1

z2

√

1 + hX ′2 − Ẋ2

h

,

Πt
x =

Ẋ

z2h

√

1 + hX ′2 − Ẋ2

h

, (2.3)

Πz
t =

hẊX ′

z2

√

1 + hX ′2 − Ẋ2

h

,

Πz
x = − hX ′

z2

√

1 + hX ′2 − Ẋ2

h

,

where of course Ẋ ≡ ∂tX(t, z), X ′ ≡ ∂zX(t, z). Notice that, due to our normalization of

LNG, the Πa
µ must be multiplied by R2/2πα′ =

√
λ/2π to obtain the physical energy and

momentum densities.

In the present section we will restrict attention to the case of vanishing temperature

(zh → ∞), in which case we are left in (2.1) with a pure AdS geometry, and the D7-brane

parameter zm is inversely proportional to the Lagrangian mass of the quark,

zm =

√
λ

2πm
. (2.4)

– 7 –
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A quark that accelerates in vacuum would be expected to emit chromoelectromagnetic

radiation. This problem has been examined from the classical perspective in [54], and

quantum-mechanically at weak coupling in, e.g., [55]. First steps towards a strong-coupling

analysis by means of the AdS/CFT correspondence were taken in [41], which employed

tools developed in [56] to study the dilatonic waves given off by small fluctuations on a

radial string in AdS5, and infer from them the profile of the gluonic field 〈TrF 2(x)〉 in the

presence of a quark undergoing small oscillations. The results of [41] painted an interesting

picture of the propagation of nonlinear waves in N = 4 SYM, but did not allow a definite

identification of waves with the 1/|~x| falloff associated with radiation. Very recently, this

falloff has been successfully detected in the same setup as [41] through a calculation of the

energy-momentum tensor 〈Tµν〉 [57], which appeared while this paper was in preparation.

2.1 Infinite mass

The first definite characterization of the radiation rate off an accelerating quark was found

much later than [41], and by a completely different route, in an important paper by

Mikhailov [52]. Remarkably, this author was able to solve the full nonlinear equation

of motion for a string on AdS5, for an arbitrary timelike trajectory of the string endpoint

dual to a heavy quark! In terms of the coordinates used in (2.1) (where for now h = 1),

his solution is

Xµ(τ, z) = z
dxµ(τ)

dτ
+ xµ(τ) , (2.5)

with µ = 0, 1, 2, 3, and xµ(τ) the worldline of the string endpoint at the AdS boundary—

or, equivalently, the worldline of the dual, infinitely massive, quark— parametrized by

the proper time τ defined through ηµν x̊
µ x̊ν = −1, where x̊µ ≡ dxµ/dτ . Equation (2.5)

displays the string worldsheet as a ruled surface in AdS5, spanned by the straight lines at

constant τ .

Combining (2.1) and (2.5), the induced metric on the worldsheet is found to be

gττ =
R2

z2
(z2˚̊x2 − 1), gzz = 0, gzτ = −R

2

z2
,

implying in particular that the constant-τ lines are null, a fact that plays an important

role in Mikhailov’s construction. In the solution (2.5), the behavior at time t = X0(τ, z) of

the string segment located at radial position z is completely determined by the behavior

of the string endpoint at a retarded time tret(t, z) obtained by projecting back toward the

boundary along the null line at fixed τ . From the µ = 0 component of (2.5), parametrizing

the quark worldline by x0(τ) instead of τ , and using dτ =
√

1 − ~v 2dx0, where ~v ≡ d~x/dx0,

this amounts to

t = z
1√

1 − ~v 2
+ tret , (2.6)

where the endpoint velocity ~v is meant to be evaluated at tret. In these same terms, the

spatial components of (2.5) can be formulated as

~X(t, z) = z
~v√

1 − ~v 2
+ ~x(tret) = (t− tret)~v + ~x(tret) . (2.7)

– 8 –
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Working in the static gauge σ0 = t, σ1 = z, the total energy of a string that extends all

the way down to the boundary— i.e., with zm = 0, corresponding to an infinitely massive

quark— follows from the Nambu-Goto action (2.2) as

E(t) =

√
λ

2π

∫ ∞

0

dz

z2

1 +
(

∂ ~X
∂z

)2

√

1 −
(

∂ ~X
∂t

)2
+
(

∂ ~X
∂z

)2
−
(

∂ ~X
∂t

)2 (
∂ ~X
∂z

)2
+
(

∂ ~X
∂t · ∂ ~X

∂z

)2
. (2.8)

Using (2.6) and (2.7), Mikhailov was able to reexpress this energy (via a change of inte-

gration variable z → tret) as a local functional of the quark trajectory,

E(t) =

√
λ

2π

∫ t

−∞
dtret

~a 2 − [~v × ~a]2

(1 − ~v 2)3
+ Eq(~v(t)) , (2.9)

where of course ~a ≡ d~v/dx0. The second term in the above equation arises from a total

derivative that was not explicitly written down by Mikhailov, but can easily be worked out

to be

Eq(~v) =

√
λ

2π

(

1√
1 − ~v 2

1

z

)∣

∣

∣

∣

zm=0

∞
= γm , (2.10)

which gives the expected Lorentz-invariant dispersion relation for the quark. The energy

split achieved in (2.9) therefore admits a clear and pleasant physical interpretation: Eq is

the intrinsic energy of the quark at time t, and the integral over tret encodes the accumulated

energy lost by the quark over all times prior to t. No less remarkable is the fact that the

rate of energy loss for the quark in this strongly-coupled non-Abelian theory is found to

be in precise agreement with the standard Lienard formula from classical electrodynamics!

For the momentum of the string, Mikhailov analogously found

~P (t) =

√
λ

2π

∫ t

−∞
dtret

~a 2 − [~v × ~a]2

(1 − ~v 2)3
~v + ~pq(~v(t)) , (2.11)

where the second term can be worked out to be

~pq =

√
λ

2π

(

~v√
1 − ~v 2

1

z

)∣

∣

∣

∣

zm=0

∞
= γm~v , (2.12)

and encodes the momentum intrinsic to the quark. The last two equations also follow

from (2.9) and (2.10) through Lorentz invariance.

2.2 Finite mass

It is interesting to consider how these results are modified in the case zm > 0, where the

mass m of the quark given by (2.4) is large but not infinite. As we have reviewed above,

in Mikhailov’s original solution (2.5) the evolution of the string at any radial position z

follows from knowledge of the trajectory of the endpoint at the AdS boundary. For a finite-

mass quark, we ought to impose boundary conditions on the string not at z = 0 but at

z = zm: given the worldline ~x(t) of the quark, we must require that the string worldsheet
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satisfy ~X(t, zm) = ~x(t). Moreover, we need only determine the behavior of the string in

the region z ≥ zm.

The required physical solution can of course be viewed as merely the z ≥ zm portion of

one particular instance of the general solution found by Mikhailov. Our task is therefore to

reexpress (2.5) in terms of the data ~x(t) at the new boundary z = zm, instead of the (now

merely auxiliary) data at the AdS boundary z = 0, which we will henceforth distinguish

with a tilde: ~̃x(t). For simplicity, we will carry out this translation explicitly only in a

setup where the quark moves purely along direction x ≡ x1, which is all that we will need

for our analysis in subsequent sections.

It follows from (2.6) and (2.7) that, at any given point (t, z) on the string worldsheet,

dt =
dz√

1 − ṽ2
+ dtret

[

ṽãz

(1 − ṽ2)3/2
+ 1

]

, (2.13)

dX =
ṽdz√
1 − ṽ2

+ dtret

[

ãz√
1 − ṽ2

+
ṽ2ãz

(1 − ṽ2)3/2
+ ṽ

]

,

where ṽ, ã denote the velocity and acceleration at the point (t = tret, z = 0) on the AdS

boundary obtained by projecting back from (t, z) along a null trajectory. From (2.13) we

can deduce that
(

∂X

∂t

)

z

=
ãz + ṽ(1 − ṽ2)3/2

ṽãz + (1 − ṽ2)3/2
. (2.14)

Evaluated at the new boundary z = zm, this formula relates the velocity v ≡ dx/dt =

∂tX(t, zm) of the actual string endpoint— i.e., the velocity of the finite-mass quark— to

the velocity ṽ and acceleration ã of the ‘auxiliary endpoint’ at z = 0. Equation (2.14)

implies that the quark acceleration a ≡ d2x/dt2 = ∂2
tX(t, zm) depends not only on ṽ and

ã, but also on the second time derivative of ṽ. Because of this, it is not possible to solve for

ṽ and ã, the quantities that appear directly in Mikhailov’s energy formula (2.9), in terms

of v and a, the data that we would naively expect to suffice to characterize the rate of

energy loss of the heavy quark.

On the other hand, from (2.6) and (2.7) we can infer as well that
(

∂X

∂z

)

t

= −
√

1 − ṽ2ãz

ṽãz + (1 − ṽ2)3/2
, (2.15)

so it is certainly possible to solve for ṽ, ã in terms of v and ∂zX(t, zm). Notice that when

zm → 0, we automatically have ∂zX(t, zm) → 0, which explains why this parameter was

not needed in the description of the infinitely-massive quark. For zm > 0, the value of

∂zX(t, zm) encodes how much the string tip tilts away from the vertical. But what does

this mean in gauge-theoretic language? Through a calculation of 〈TrF 2〉 or 〈Tµν〉 in parallel

with that of [56, 41, 25], the slant of the string will have an impact on the shape of the

gluonic field profile in the immediate vicinity of the heavy quark: for ∂zX(t, zm) 6= 0, this

profile is not spherically symmetric. We find it physically more transparent to express the

rate of energy loss in terms not of ∂zX(t, zm) but of the string momentum density Πz
x given

by (2.3), which by use of (2.14) and (2.15) can be rewritten as

Πz
x =

ã

z(1 − ṽ2)3/2
. (2.16)
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When evaluated at z = zm, this controls the external force F ≡ (
√
λ/2π)Πz

x(t, zm) acting

on the string endpoint, or equivalently, on the quark.

Inverting (2.14) and (2.16), we find

ṽ =
v − z2

mΠ

1 − z2
mvΠ

, (2.17)

ã = zmΠ
(1 − v2)3/2(1 − z4

mΠ2)

(1 − z2
mvΠ)3

,

where we have abbreviated Π ≡ Πz
x. Using this and (2.13) in (2.9), we finally conclude

that the total energy of the string at time t is given by

E(t) =

√
λ

2π

∫ t

−∞
dt z2

mΠ2

[

1 − vΠz2
m

1 − z4
mΠ2

]

+ Eq(v(t), F (t)) . (2.18)

As before, the first term represents the accumulated energy lost by the quark at all times

prior to t: it is the generalization to the m <∞ case of the Lienard formula (2.9) deduced

by Mikhailov. The second term again denotes a surface term and gives the modified

dispersion relation for the finite-mass quark,

Eq(v, F ) =

√
λ

2π

(

1 − z2
mvΠ

z
√

(1 − v2)(1 − z4
mΠ2)

)∣

∣

∣

∣

∣

zm

∞
=

(

2πm2 −
√
λvF√

4π2m4 − λF 2

)

γm . (2.19)

Starting instead from Mikhailov’s formula (2.11) for the momentum, we find

P (t) =

√
λ

2π

∫ t

−∞
dt z2

mΠ2

[

v − Πz2
m

1 − z4
mΠ2

]

+ pq(v(t), F (t)) , (2.20)

where

pq(v, F ) =

√
λ

2π

(

v − z2
mΠ

z
√

(1 − v2)(1 − z4
mΠ2)

)∣

∣

∣

∣

∣

zm

∞
=

(

2πm2v −
√
λF√

4π2m4 − λF 2

)

γm . (2.21)

Notice that ∂Eq/∂pq = (2πm2v−
√
λF )/(2πm2−

√
λvF ), which for m <∞ and F 6= 0

differs from the result expected for a pointlike quark, ∂E/∂p = v. This reflects the fact

that the fundamental source dual to a string that terminates at zm > 0 is indeed not

pointlike. According to the standard UV/IR connection [58], it has a linear size of order

zm, and it is only because of this extended nature that, as we saw above, to characterize its

state one needs to specify not only the velocity v but also the parameter F (or ∂zX(t, zm))

that encodes its shape. The crucial point here is that the source in question should not

be thought of as a bare quark, but as a ‘dressed’ or ‘constituent’ quark, surrounded by a

gluonic cloud with thickness zm [59, 60]. We will see more evidence of this in section 5.

Another salient feature of the energy and momentum of the quark given by expres-

sions (2.19) and (2.21) is the fact that they both diverge as the value of the external force

approaches

Fcrit =
2πm2

√
λ

. (2.22)
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The reason for this is easy to understand on the string theory side. To exert a force F

on the string endpoint, within the D7-branes we must turn on an electric field that has

strength F01 = F at z = zm. Working in static gauge, the Born-Infeld Lagrangian on the

D7-branes is then

√

− det(gab + 2πα′Fab) ∝
√

−GttGxx − (2πα′F01)2 = R2

√

1

z4
−
(

2π√
λ
F01

)2

,

which is real at z = zm only as long as the electric field is below the value F crit
01 =

√
λ/2πz2

m.

Through (2.4), this is seen to coincide with the value of the critical force (2.22). The

physical origin of this bound is the fact that, for F01 > F crit
01 , the creation of open strings is

energetically favored, and so the system is unstable. According to (2.19) and (2.21), then,

the energy and momentum of the constituent quark diverge precisely at the point where

the external force becomes capable of nucleating quark-antiquark pairs.

2.3 Late-time behavior and worldsheet black hole

It is interesting to consider the evolution of the string in the case where the quark is

accelerated by an external force F (t) over some period of time and is then set free at a

time trelease. If we put F = 0 (Π = 0) in (2.17), then ã = 0 (the acceleration of the auxiliary

z = 0 endpoint of the string vanishes), which in turn implies through (2.14) and (2.15)

that Ẋ = ṽ and X ′ = 0 at all points on the same null (constant tret) line, independently

of the value of z. In particular, the lower (z = zm) endpoint of the string travels at speed

v ≡ Ẋ(t, zm) = ṽ, which means that that, for t ≥ trelease, the quark moves at constant

velocity v, as one would expect given the fact that it is in vacuum.

As time progresses, the null line that departs from the point (trelease, zm), which ac-

cording to (2.6) is given by

zrelease(t) =
√

1 − v2(t− trelease) + zm , (2.23)

reaches further away from the AdS boundary, so there is an increasing portion of the string

(zm ≤ z ≤ zrelease(t)) that is completely vertical and moves with the same final velocity

v. As t → ∞, this vertical segment describes a quark that moves at constant speed and is

surrounded by a stationary gluonic field profile, related to that of a static quark through

a Lorentz transformation.

At any given time t ≥ trelease, then, the energy and momentum previously radiated by

the quark are stored as excess energy and momentum on the portion of the string above

zrelease(t). This suggests the existence of a geometric region on the worldsheet that ‘absorbs’

the surplus E and p.

To define this region more precisely, we should note first that, for the spacetime met-

ric (2.1) (with h = 1), null curves on the worldsheet obey

ż
(±)
null(t) =

−X ′Ẋ ±
√

1 +X ′2 − Ẋ2

X ′2 + 1
, (2.24)
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with the upper or lower sign for the upward- or downward-pointing half of the future light

cone, respectively. Using (2.14), (2.15) and (2.17), this translates into

ż
(+)
null(t) =

√

(1 − v2)(1 − z4
mΠ2)

1 − vz2
mΠ

(2.25)

and

ż
(−)
null(t) = −(1 − vz2

mΠ)
√

(1 − v2)(1 − z4
mΠ2)

[

1 − (z2 + z2
m)z2

mΠ2
]

[

zzmΠ(v − z2
mΠ) + (1 − vz2

mΠ)
√

1 − z4
mΠ2

]2 , (2.26)

where, as before, v and Π refer to the velocity and external force at zm, evaluated at the

retarded time corresponding to the given (t, z). As mentioned earlier, Mikhailov’s constant-

tret lines (2.6)–(2.7), and (2.23) in particular, are null, and indeed they can be easily seen

to satisfy (2.25).

If we follow the point zrelease(t) as t → ∞ (reaching the spacetime horizon for the

Poincaré patch, z → ∞), and then project back along the downward pointing light half-

cone z
(−)
null(t), we delineate a region (z ≥ z

(−)
null(t)) on the string worldsheet from which,

by construction, no signal can escape to the asymptotic region corresponding to the final

vertical and stationary segment of the string. In other words, the curve z
(−)
null(t) so obtained,

which we will henceforth denote by zBH(t), is the event horizon of a worldsheet black hole.

A worldsheet black hole figured prominently in the energy loss analysis of [20, 19],

concerning a quark in a thermal plasma. Those works considered the steady-state con-

figuration where the quark moves at a constant velocity v; as a consequence, the black

hole they encountered was static, with an event horizon located at the fixed position

zBH(t) ≡ zh(1 − v2)1/4, precisely the radius that played a crucial role in the drag force

calculation of [7, 8].

In our non-stationary system, on the other hand, the worldsheet black hole is dynam-

ical. Let us focus for concreteness on the case where the quark is static up to a time

t = tgrab, and is then accelerated until t = trelease. The location zBH(t) of the event horizon

will begin descending from z → ∞ even before t = tgrab (in anticipation of the disturbance

produced by the acceleration at the lower endpoint), reach a minimum value of the radial

coordinate, and then move up again, approaching zrelease(t) as t→ ∞. Notice from (2.26)

that, at any given z, the light half-cone ż
(−)
null can only point towards increasing z for suf-

ficiently large Π (and, for any given Π 6= 0, it will point upward for sufficiently large z).

This means that the entire upward portion of zBH(t) must lie within the region of maximal

disturbance of the worldsheet, i.e., in the diagonal swath between zgrab(t) ≡ t− tgrab + zm
and zrelease(t).

As usual, determining the exact location of the event horizon is difficult due to the

global character of its definition: one must know the entire history of the string and then

integrate (2.26), subject to the stated final condition. It is, however, easy to pinpoint

with this same equation the location on the worldsheet where ż
(−)
null(t) = 0, which gives a

lower bound on the upward portion of zBH(t) (where, by definition, one has ż
(−)
null(t) > 0).

From (2.26), this happens at

zergo(t) =

√

1 − z4
mΠ2

zmΠ
, (2.27)
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t
0

z↑
∞

zm

zreleasezgrab

zergo

zBH

Figure 1: Schematic illustration of the string worldsheet (shaded in gray), in the static gauge

τ = t, σ = z, showing the upward null Mikhailov (fixed ttret) lines zgrab and zrelease (solid green),

the stationary limit curve zergo (dotted blue), and the event horizon zBH (thick dotted red) above

which lies the worldsheet black hole (shaded light red). See text for discussion.

where, again, the external force Π is meant to be evaluated at the retarded time appropriate

for the given t, z. At any point along this curve, the downward light half-cone is horizontal

(or, equivalently, gtt = 0), so timelike trajectories must necessarily point towards larger

z. In other words, zergo(t) is a stationary-limit curve, and the region between it and

the upward portion of the event horizon is the analog of an ergosphere, a concept whose

relevance has been noted previously in the T > 0 context in [29]. Setting Π = 0 in (2.27)

implies zergo → ∞, so, unlike the event horizon, the stationary limit curve is located fully

within the diagonal region between zgrab(t) and zrelease(t). It follows from the definitions of

the two curves that zBH(t) crosses zergo(t) precisely when the former attains its minimum

value, and so the downward portion of the horizon lies below and to the left of zergo(t).

The situation is summarized in figure 1.

It is interesting that at T = 0 the notion of a worldsheet black hole plays as much of a

role as in previous analyses at finite temperature. The appearance of such causal structure

is seen then to be intrinsically tied to energy dissipation, be it within a thermal plasma or

in vacuum. We will examine the former case in section 3.3. It would be nice to develop

this picture further by exploring the relation between the rate at which energy crosses the

black hole horizon and the modified Lienard formula in (2.18).

3. Single quark evolution: finite temperature

Having understood the rate of energy and momentum loss and dispersion relation for a

heavy quark that moves in the SYM vacuum, in this section we restore zh < ∞— and

consequently h < 1— in the metric (2.1), to study the same quantities in the case where

the quark moves through a thermal plasma. In this case, the position z = zm ≤ zh where
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the D7-branes ‘end’ is related to the Lagrangian mass m≫
√
λT of the quark through [7]

1

zm
=

2πm√
λ



1 +
1

8

(√
λT

2m

)4

− 5

128

(√
λT

2m

)8

+ O





(√
λT

2m

)12






 . (3.1)

A thorough generalization of Mikhailov’s analytic results [52] to this finite temperature

setup would require finding the exact solution to the Nambu-Goto equation of motion for

the string on the AdS-Schwarzschild background, for any given trajectory of the string

endpoint at zm ≥ 0. Sadly, we have not been able to accomplish this feat. Nevertheless,

based on the results discussed in the previous subsection, we expect the total energy of the

string at any given time to again decompose into a surface term that encodes the intrinsic

energy of the quark and an integrated local term that reflects the energy lost by the quark.

A priori it might not be obvious that the rate of energy loss in the presence of the

strongly-coupled non-Abelian plasma should be given by some expression that depends

just on the behavior of the quark at the given instant, and not on its previous history.

But in the AdS/CFT context, this property is strongly suggested by the fact that the

energy of the string is given by a local expression on the worldsheet just as much in the

AdS-Schwarzschild background that is dual to the thermal plasma as in the pure AdS

background that corresponds to the SYM vacuum (which, one should not forget, is in itself

a nonlinear medium). Starting with E written as an integral over z, it should again be

possible to project back to the boundary along null trajectories, to obtain a formula that

depends locally on the quark worldline ~x(t). The main difference with the zero-temperature

case would be that the null trajectories are no longer straight lines.

3.1 Constant velocity

We have verified that these expectations are borne out in the case of the only finite-

temperature solution that is known analytically: the stationary configuration of [7, 8],

X(t, z) = v

[

t− zh
4

ln

(

zh + z

zh − z

)

+
zh
2

tan−1

(

z

zh

)]

, (3.2)

which describes a quark moving at constant velocity v. Any given point (t, z) on this

worldsheet is connected to a point (tret, 0) on the AdS boundary by a null curve t(z),

defined by
(

dt

dz

)

tret

=
z4
h(z2

h +
√

1 − v2z2)

(z4
h − z4)(z2 + z2

h

√
1 − v2)

. (3.3)

This equation can be integrated to give

t = tret +
zh
4

ln

(

zh + z

zh − z

)

− zh
2

tan−1

(

z

zh

)

+
zh

(1 − v2)1/4
tan−1

(

z

zh(1 − v2)1/4

)

, (3.4)

in terms of which the stationary solution (3.2) can be written in the form

X(tret, z) =
zhv

(1 − v2)1/4
tan−1

(

z

zh(1 − v2)1/4

)

+ x(tret) . (3.5)
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Knowledge of this solution allows the total energy of the string,

E(t) = −
√
λ

2π

∫ zh

zm

dzΠt
t =

√
λ

2π

∫ zh

zm

dz
hX

′2
+ 1

z2

√

1 + hX ′2 − Ẋ2

h

, (3.6)

to be reexpressed as

E(t) =

√
λ

2π

∫ t

−∞
dtret

v2

z2
h

√
1 − v2

+

√
λ

2π

[

1

zm
√

1 − v2
+

v2

zh(1 − v2)
3

4

tan−1

(

zm

zh(1 − v2)
1

4

)

− 1

zh
√

1 − v2
− v2

zh(1 − v2)
3

4

tan−1

(

1

(1 − v2)
1

4

)]

. (3.7)

Similarly, the total momentum of the string,

P (t) =

√
λ

2π

∫ zh

zm

dzΠt
x =

√
λ

2π

∫ zh

zm

dz
Ẋ

z2h

√

1 + hX ′2 − Ẋ2

h

, (3.8)

can be rewritten in the form

P (t) =

√
λ

2π

∫ t

−∞
dtret

v√
1 − v2

+

√
λ

2π

[

v

zm
√

1 − v2
+

v

zh(1 − v2)
3

4

tan−1

(

zm

zh(1 − v2)
1

4

)

− v

zh
√

1 − v2
− v

zh(1 − v2)
3

4

tan−1

(

1

(1 − v2)
1

4

)]

. (3.9)

As expected, the integrated term in the top line of (3.7) and (3.9) recovers the result

for the stationary rate of energy and momentum loss obtained in [7, 8],
(

dEq

dt

)

s

= −π
2

√
λT 2 v2

√
1 − v2

,

(

dpq

dt

)

s

= −π
2

√
λT 2 v√

1 − v2
. (3.10)

The terms in the second and third line of (3.7) and (3.9), then, codify the energy Eq and

momentum pq that are intrinsic to the quark. We can see that, just like at zero temperature,

∂Eq/∂pq reduces to v only in the pointlike limit zm → 0.

An important difference with respect to the T = 0 case analyzed in the previous sub-

section is that here the surface contribution that determines the quark dispersion relation

arises not only from the lower (z = zm) but also from the upper (z = zh) endpoint of

the string. This is in fact the generic situation in the T > 0 case, and holds even for the

static radial string, where there is of course no energy loss term and E is given just by a

boundary contribution that defines the thermal rest mass of the quark,

Mrest =

√
λ

2π

(

1

zm
− 1

zh

)

. (3.11)
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Clearly the second term in (3.11), just like the terms in the third line of (3.7) and (3.9),

arises from the string endpoint located at the black hole horizon. It is natural then to won-

der to what extent these terms should be regarded as a contribution to the intrinsic energy

of the quark, because their value at any given time does not depend on the parameters

v and F (or ∂zX(t, zm)) that characterize the state of the lower endpoint at the same

instant. In fact, since zh marks the position of an event horizon, for any finite coordinate

time t the value of the surface contribution at zh is not influenced by the behavior of the

z < zh portion of the string, but depends only on the string’s configuration at t → −∞.

The same interpretation can be then carried over to the gauge theory: the seemingly ex-

traneous terms represent a contribution to the energy of the state that depends solely on

the initial configuration of the quark+plasma system. Throughout the evolution, causality

guarantees that the behavior of the SYM fields at spatial infinity can only be affected by

the initial configuration at t → −∞, so we can equivalently think of the surface terms at

zh as encoding information on the asymptotic boundary conditions for the system. Indeed,

for dynamical processes, the radial location z = zh in AdS-Schwarzschild corresponds to

the deep IR of the gauge theory.

We conclude then that, to the extent that we wish to compare the energies of con-

figurations with different initial/boundary conditions, it is important to keep track of the

terms arising from the surface contribution at the horizon, despite the fact that they are

generally independent of the parameters v and F associated with the intrinsic dynamics

of the quark. Notice, in particular, that with this interpretation the negative sign in the

second term of (3.11)— which is at first sight unexpected when viewed as the leading-order

thermal correction to the quark mass [19]— becomes easier to digest: it reflects the screen-

ing effect of the plasma on the long-range gluonic fields set up by the quark, which implies

a reduction of the energy stored in the IR, in comparison with the T = 0 case.

It is instructive to compare (3.7) with the alternative split achieved in [7],

E(t) =

√
λ

2π

v2

z2
h

√
1 − v2

∆x

v
+

√
λ

2π

(

1

zm
− 1

zh

)

1√
1 − v2

, (3.12)

with ∆x ≡ X(t, zm) − X(t, zh). If one could interpret this latter quantity as the total

distance traversed by the quark since the beginning of time, then the first term in (3.12)

would give the overall energy lost by the quark, at the known rate (3.10), in the total elapsed

time ∆x/v. In view of (3.11), the second term would then imply a standard relativistic

dispersion relation for the quark, with mass Mrest.

The problem with this interpretation, however (alluded to already in [7]), is that it does

not properly address the issue of initial conditions. The actual distance travelled by the

quark is by definition X(t, zm)−X(−∞, zm), which agrees with ∆x only if X(−∞, zm) =

X(t, zh).3 This last equality would hold if we had started at t → −∞ with the quark at

rest (i.e., with the string static and completely vertical), but the energy-loss term in (3.12)

makes no allowance for an initial period of acceleration.

3When writing expressions like X(−∞, zm), we of course have in mind evaluating the corresponding

quantities at a time that is fixed but arbitrarily far in the past.
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In contrast with this, the separation obtained in (3.7) has a clear geometric origin

in the context of the generalization pursued here of Mikhailov’s work [52] to the finite-

temperature case. Within this framework, the portion dE(t, zh) of the total string energy

E(t) that is contributed by the segment of the string in the immediate vicinity of the

horizon (located at X(t, zh) in the notation of (3.2), or X(tret, zh) in the notation of (3.5))

was lost by the quark at a particular time tret in the distant past that can be deduced

from (3.4). Since this is the highest segment of the string that contributes to E(t), tret
marks the precise instant when we need to begin our accounting of the energy lost by the

quark. At t = tret the lower endpoint of the string (and, hence, the quark) was found a

distance d ≡ X(tret, zh)−X(tret, zm) behind the location of the upper endpoint at t, which

according to (3.5) translates into

d =
zhv

(1 − v2)1/4
tan−1

(

1

(1 − v2)1/4

)

− zhv

(1 − v2)1/4
tan−1

(

zm
zh(1 − v2)1/4

)

.

By this logic, the total energy lost by the quark is given by an expression of the same form

as the first term of (3.12), but with ∆x replaced by the actual total distance ∆x + d =

v
∫ t
−∞ dtret. And indeed, we see that the integrated term in the first line of (3.7) is larger

than the putative energy loss term in (3.12) precisely by the amount (d/v)dEq/dt, and,

correspondingly, the intrinsic energy of the quark identified in the second and third line

of (3.7) is smaller by this same amount than what (3.12) would have indicated.4

3.2 Accelerated quark

Having gained some intuition from the analysis of a quark moving as in [7, 8] at constant

speed relative to the strongly-coupled plasma, let us now turn our attention to the more

general situation where the quark accelerates. In [7], a few important steps were taken to

have a better understanding of this case; in the next few paragraphs we will briefly review

the key results.

A quark that undergoes any type of (forced or unforced) motion (and, in the former

case, is thereafter released) will be slowed down by its interaction with the plasma, and

eventually come to rest. The authors of [7] studied the late-time (and consequently low-

velocity, low-acceleration) behavior of such a quark, by considering small, exponentially

damped fluctuations around the final rest configuration. In dual language, this involves a

determination of the quasi-normal modes on the worldsheet of a static and purely radial

string. From their analysis they were able to numerically deduce, for any given quark mass

parameter zm, the value of the drag coefficient

µ ≡ − 1

pq

dpq

dt
. (3.13)

4The fact that, in going from (3.7) to (3.12), part of the total derivative has been shifted back to the

integrated term might give the impression that the split between the intrinsic energy of the quark and the

energy that has already been lost is inherently ambiguous. The wide latitude available in this case, however,

stems from the steady-state nature of the configuration under scrutiny. In the general case, clearly it is a

very non-trivial property for a particular contribution to the energy E(t) of the string to be expressible as

a functional only of the state of the endpoints at the given instant.
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As long as one maintains the restriction to the non-relativistic regime, the above definition

is equivalent to µ = −(1/v)dv/dt, and by construction yields a result that is independent

of p (or v). A few representative values were tabulated in [7].

Additionally, the authors of [7] gave an analytic derivation of the low-velocity dispersion

relation for the quark, which they found to take the form

Eq = Mrest +
p2

q

2Mkin
+ O(p4

q) , (3.14)

where Mrest is the thermal rest mass (3.11), and

Mkin ≡ π

2

√
λT 2

µ
(3.15)

the kinetic mass of the quark. In the heavy quark limit m≫
√
λT (zm ≪ zh), where (3.11)

and (3.1) imply that

Mrest = m−
√
λT

2
+ O

(

m

(
√
λT

2m

)4)

, (3.16)

they found from their quasi-normal mode calculation that

µ =
π

2

√
λT 2

m

[

1 +

√
λT

2m
+ O

((
√
λT

2m

)2)]

, (3.17)

which through (3.15) leads to

Mkin = Mrest + O
(

m

(
√
λT

2m

)2)

. (3.18)

It was noticed in [7] that expressions (3.14) and (3.17), valid in the low-velocity, low-

acceleration regime, as well as the value of the drag coefficient (3.13) deduced from (3.10),

valid for a quark with constant but otherwise arbitrary velocity, are consistent with a

relativistic dispersion relation of the form

Eq = Mrest −Mkin +
√

p2
q +M2

kin = Mrest +Mkin(γ − 1) . (3.19)

Additional evidence for this relation was found from the analysis of back-to-back motion

of a quark and antiquark formed within the plasma. The results of [7] in this setting will

be reviewed and extended in section 4.

In view of the discrepancy between (3.19) and the relation Eq =
√

p2
q +M2

rest that

one would naively infer from the second term in (3.12), the authors of [7] emphasized the

need for a more detailed study of the quark’s intrinsic dynamics, and proposed a plan of

attack. They observed that if one starts with the quark at rest in the hot medium, and

then accelerates it with an external force, then as long as energy dissipation is negligible,

it is natural to define the total intrinsic energy of the quark as the initial rest energy plus

the work done by the external agent. Motivated by this proposal, we have studied the

early-time behavior of a quark initially at rest, which is accelerated by a time-dependent
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external force that is turned off after a short period of time, allowing the quark to move

thereafter only under the influence of the plasma.

As we already mentioned, regrettably, we have not been able to find a general exact

solution to the Nambu-Goto equation of motion for the string in the non-stationary case.

Nevertheless, it is certainly possible to find numerical solutions that describe string con-

figurations dual to the gauge theory setup described above. Starting at t = 0, a string

extending from a fixed value of the radial coordinate z = zm to the horizon at z = zh,

initially at rest and vertical, is accelerated by applying an external force F (t) to its lower

endpoint. After a time trelease, this external force is set to zero and the string moves freely

in the curved background.

Using (2.1) and (2.2) and imposing the condition that the string moves only in the

x ≡ x1 direction, the equation of motion is

∂

∂z





−hX ′

z2

√

1 + hX ′2 − Ẋ2

h



+
∂

∂t





Ẋ

z2h

√

1 + hX ′2 − Ẋ2

h



 = 0 , (3.20)

and we must set the initial and boundary conditions to be

X(0, z) = 0 , Ẋ(0, z) = 0 , X ′(t, zm) = f(t) , X(t, zh) = 0 . (3.21)

The first two conditions here simply implement the requirement that the string start out

being static and purely radial. In the third condition, for a given external force F (t) ≡
(
√
λ/2π)Πz

x(t, zm) acting on the quark, the function f(t) could be determined using the

relation (2.3) between X ′ and Πz
x. In practice we find it easier, however, to specify f(t) and

use the results of the numerical integration together with (2.3) to deduce the associated

F (t). By studying a number of different examples, we have verified that the instantaneous

rate of energy loss after the quark is released is independent of our choice of f(t) and

trelease, i.e., the quark does not care about its past history. For the trajectories that we will

plot below, we have used f(t) = bt(t− trelease), with trelease = 0.3/πT and adjustable b.

The fourth and final condition in (3.21) specifies that the string endpoint at the horizon

remain fixed, reflecting the fact that the wavefront for the disturbance produced by the

external agent at the z = zm endpoint of the string will not reach z = zh before an

infinite amount of (boundary) time has elapsed. In order to implement this condition in

our numerical integration, we have set X(t, zmax) = 0 at a radial cutoff zmax = 0.999zh, and

considered in all cases an integration time tmax smaller than the time
∫ zmax

zm
dz/(1−(z/zh)4)

that it takes the wavefront to reach the cutoff.

For applications of this formalism to phenomenology, we must choose values of the mass

parameter zm based on the charm and bottom quark masses, m ≃ 1.4, 4.8 GeV. The issue

of how best to translate between the SYM and QCD parameters has been discussed in [48].

Taking αQCD = 0.5 (gQCD =
√

2π), Nc = 3 and TQCD = 250 MeV, and employing the “ob-

vious” prescription gYM = gQCD and TSYM = TQCD, from (3.1) we find that zm/zh ∼ 0.40

for charm and zm/zh ∼ 0.11 for bottom. If, on the other hand, one uses the “alternative”

scheme g2
YMN ∼ 5.5 (motivated in [48] through a rough matching of the AdS/CFT and

lattice quark-antiquark potentials) and TSYM = 3−1/4TQCD ≃ 190 MeV (which follows from
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Figure 2: Quark velocity as a function of time from our numerical integration (in red) compared

against (3.24) with the value of µ deduced in [7] (in black), and (3.24) with µ chosen to fit the

data (in light blue), for a) zm/zh = 0.2 and b) zm/zh = 0.4. See text for discussion,

equating the energy densities of the two theories), then (3.1) leads to zm/zh ∼ 0.16 for

charm and zm/zh ∼ 0.046 for bottom. In our analysis, we have covered a significant range

of masses, but below we will present the results only for three representative values in the

neighborhood of the charm mass: zm/zh = 0.2, 0.3, 0.4.

We have carried out the numerical integration of (3.20) subject to (3.21) using the

NDSolve routine of Mathematica 5.2. Based on the variation of our results upon dou-

bling the number of integration steps, we estimate our numerics to be accurate to bet-

ter than 1%. The integration time shown in all plots is given in units of 1/πT , which

(for TQCD = 250 MeV) corresponds to 0.25 fm/c under the “obvious” and 0.33 fm/c un-

der the “alternative” prescription of [48]. Unfortunately, the numerical integration de-

grades rather quickly, so in either scheme our investigation is limited to intervals that

are an order of magnitude below the experimental timescale of the plasma (typically

tbreakdown ∼ 0.9/πT ∼ 0.3 fm/c). For the same reason, even though the quark can be

taken to relativistic velocities at the point of maximal acceleration, we can only achieve

rather small velocities at the time of release (for the most part, vrelease < 0.1).

Our results show a qualitative difference between the initial stage (0 ≤ t < trelease)

where the quark is accelerated by means of the external force F (t), and the second stage

(trelease ≤ t < tmax) where it moves only under the influence of the plasma. We will

begin by discussing the latter stage, which would appear to be more relevant from the

phenomenological perspective.

The most direct way to inquire whether the output of our numerical integration for

the accelerated quark conforms to the the constant-velocity (or late-time) results of [7,

8] is to compare the corresponding quark trajectories. If one assumes the dispersion

relation (3.19), then the equation of motion for a quark subject only to the drag force (3.13)

with constant µ is

dv

dt
= −µv(1 − v2) , (3.22)

– 21 –



J
H
E
P
0
6
(
2
0
0
8
)
0
0
5

whose solution is [7]

v(t) =
vrelease

√

v2
release + (1 − v2

release)e
2µ(t−trelease)

. (3.23)

As we already mentioned, in our numerical results vrelease ≪ 1, so we are only able to test

the non-relativistic version of (3.23),

v(t) = vreleasee
−µ(t−trelease) (3.24)

(and, since our integration is limited to small time intervals, we would in effect see just

the linear portion of this function). A comparison between this analytic prediction and

our numerical results for t ≥ trelease is given in figure 2. It is evident from this plot that,

in the early stage of motion covered by our analysis, the quark dissipates energy at a rate

much lower than the late-time result of [7]. Indeed, for zm/zh = 0.2, 0.3, 0.4 the asymptotic

friction coefficient is respectively µlate/πT = 0.25, 0.41, 0.59, but our numeric results for

v(t) are best approximated by µearly/πT = 0.08, 0.15, 0.26.

We can also attempt to perform the comparison directly at the level of energy loss rates.

An important drawback of working with the numerical solution, however, is that we cannot

achieve a direct splitting of the total energy E of the string, as we did in the stationary case

(as well as in the general case at zero temperature). This means that, a priori, we know

neither the correct form of the quark dispersion relation nor the formula for the rate of

energy loss. But, given that their sum remains constant throughout the evolution, finding

a prescription for one of these two quantities would enable us to compute the other.

The authors of [7] assumed that the energy loss would be negligible for sufficiently

short acceleration intervals (i.e., for small trelease), because the drag force exerted by the

plasma would not have been able to perform a substantial amount of work. If true, this

would allow a direct empirical determination of the dispersion relation. Unfortunately,

the situation is not so simple, because, as we learned in section 2, the quark loses energy

through radiation even in the absence of the plasma, and this effect must be taken into

account to establish what fraction of the total string energy E is intrinsically ascribable to

the quark.

To attempt to cut this Gordian knot, we should recall, from our study of the cases

where we had analytic control, that the dispersion relation arises as a surface term, with

contributions from both endpoints of the string. Based on our previous results, we expect

the dispersion relation for the quark in the thermal medium to take the form

Eq(v, F, T ) =

√
λ

2π

(

1 − z2
mvΠ

zm
√

(1 − v2)(1 − z4
mΠ2)

− 1

zh

)

+ O(z2
m/z

3
h) . (3.25)

The first term here has been copied from the T = 0 expression (2.19) (again abbreviating

Π ≡ Πz
x), and is meant to approximate the contribution from the string endpoint lying on

the D7-branes. The second term arises from the endpoint that reaches the horizon, which

we understood above to encode information about the initial conditions. Knowing that our

starting configuration is static, we can simply read off this contribution from the second
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term in the rest energy (3.11), which we have interpreted as a screening effect. Including

this term is important to ensure that (3.25) reduces to the correct result in the case of a

quark that is static and unaccelerated, Eq(0, 0, T ) = Mrest.

Clearly equation (3.25) is just an approximation, because the first term should receive

thermal corrections. In particular, it is natural to expect the factor of 1 − z4
mΠ2 in the

denominator to be replaced by h(zm) − z4
mΠ2, so that, just like in the T = 0 case, the

quark energy diverges at the critical value of the electric field, which now corresponds

to Π =
√

h(zm)/z2
m [20]. More generally, since the background metric (2.1) knows that

T > 0 only through the factor h < 1, any corrections to the z = zm surface term due

to the presence of the plasma should be of order 1−h or h′, and are consequently small

in the heavy quark regime zm/zh ≪ 1. For the phenomenologically interesting values

zm/zh = 0.2, 0.3, 0.4, the error in the dispersion relation (3.25) is estimated to be ∼ 4−16%

(much larger than our ∼ 1% numerical error).

Notice that (3.25) without any corrections should give the exact dispersion relation in

the infinite-mass limit zm → 0 that has been the focus of many AdS/CFT investigations

of energy loss (e.g., [8, 25]). In this limit one is left with

Eq(v, T ) =

√
λ

2π

(

γ

zm
− 1

zh

)

, (3.26)

i.e., the F -dependence drops out and, just like in the T = 0 context at the end of section 2,

one recovers pointlike behavior. We can see that, as expected, the first term in (3.26)

agrees with the zm → 0 limit of the second line of the stationary expression (3.7), but the

second term in (3.26) disagrees with the limit of the third line of (3.7), due to the different

initial conditions.

Expression (3.25) as a whole looks superficially rather different from the dispersion

relation (3.19) proposed in [7]. In particular, (3.19) evidently cannot reproduce the F - (or

Π-)dependence seen in (3.25), whose presence is supported by the zero-temperature results

of the previous subsection. It is important to remember, however, that such dependence

indeed would not have been visible in the quasi-normal mode analysis used to derive (3.14)

or in the quark-antiquark evolution that gave part of the support for (3.19), because in

those calculations the external force was taken to vanish.

Setting Π = 0, (3.25) reduces to Eq = (
√
λ/2π)(γ/zm −1/zh)+O(z2

m/z
3
h), while (3.19)

translates (via (3.11) and (3.18)) into Eq = (
√
λ/2π)(γ/zm − γ/zh) + O(zm/z

2
h). The

two expressions differ in the form of the second, zm-independent term, which we have

understood to encode the initial conditions for the gauge system. Given that the initial

conditions for all situations considered in [7] differ from our current setup, there is no reason

why we should expect the corresponding terms to agree. Beyond this, there also appears to

be a discrepancy in the order of magnitude for the corrections to the two expressions. We

remain puzzled by this apparent mismatch, because as explained below (3.25), we do not

see how the zero-temperature relation could receive corrections higher than order 1−h or h′.

We interpret the v-dependence seen in the surface contribution at zh implied by (3.19)

to be a reflection of the fact that, for the quasi-normal mode considered in [7], the string
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endpoint at the horizon is indeed moving, unlike what happens in our case.5 In other

words, we find that the ‘kinetic mass of the quark,’ defined as the coefficient of the v2/2

term in Eq, is sensitive to the initial conditions. In particular, for a quark that is initially

static, we have obtained a dispersion relation of the same relativistic form as (3.19),

Eq = Mrest +Mkin(γ − 1) + O
(

m

(
√
λT

2m

)3)

, (3.27)

but with Mkin =
√
λ/2πzm = m+ O(m(

√
λT/2m)4).

We are finally in position to address energy loss. For the type of process we consider,

the total energy of the string at time t is given by

E(t) = Mrest + Einput(t) ,

where the second term is the work performed by the external force, which can be computed

by integrating the energy current −Πz
t (t, zm) shown in (2.3). The energy lost by the heavy

quark can then be obtained as

Elost(t) ≡ E(t) −Eq(v(t), F (t), T ) = Einput(t) − Ekin(t) , (3.28)

where the last term is the kinetic energy

Ekin ≡ Eq(v, F, T ) −Mrest =

√
λ

2π

1

zm

(

1 − z2
mvΠ

√

(1 − v2)(1 − z4
mΠ2)

− 1

)

. (3.29)

Of course, in the t ≥ trelease (Π = 0) stage, with the small velocities that we achieve we are

only sensitive to the non-relativistic (quadratic in v) terms in this equation.

In figure 3, we compare the energy loss at for different masses but equal velocity at

the time trelease when the external force is set to zero. The curves have essentially constant

slope for t > trelease, meaning that the rate of energy loss is nearly constant in the limited

time window that we have access to. The lines in the figure contrast the instantaneous

rate of energy loss in this interval, obtained by a numerical fit and denoted henceforward

by (∂tEq)n, against the corresponding stationary result of [7, 8], which we will denote by

(∂tEq)s. For zm = 0.4, (∂tEq)n is close to two times bigger than (∂tEq)s, and as the value of

zm decreases (corresponding to heavier quarks), the difference between the two rates grows

bigger. In particular, for zm = 0.2, (∂tEq)s is at least three times bigger than (∂tEq)n.

A similar comparison is shown is figure 4, but with a fixed mass value and different

release velocities. In all cases, we have found again that the rate of energy loss (3.10),

valid in the stationary regime, is above our numerical result. The discrepancy observed

is significantly larger than our estimated margin of error. Our results therefore provide

clear evidence that, in the mass range of primary phenomenological interest, there exist

5For the quark-antiquark configurations that were analyzed in [7] and will be reviewed and generalized

in section 4, there is no endpoint at the horizon, so we should expect to get only a surface contribution

from z = zm. Independently of that, the evolution in that case is not sensitive to the value of Mkin, which

appears on both sides the equation of motion (4.18), and consequently drops out, leading to (3.22).
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Figure 3: a) Accumulated energy loss (in units of
√
λT/2) as a function of time (in units of

1/πT ) for a) zm = 0.2 (red) and zm = 0.4 (blue) with vrelease = 0.051, and b) zm = 0.2 (red) and

zm = 0.3 (blue) with vrelease = 0.073. For comparison, the dashed curves of the same colors give

the energy loss that would follow from the stationary rate (3.10) obtained in [7, 8]. The green lines

represent the rate (3.10) evaluated with v = vrelease, which can be contrasted against the slope of

the numerical curves, shown in black.
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Figure 4: a) Accumulated energy loss (in units of
√
λT/2) as a function of time (in units of 1/πT )

for a) zm = 0.2 with v = 0.056 (red) and v = 0.111 (blue) and b) zm = 0.3 with v = 0.036 (red)

and v = 0.073 (blue). The dashed curves of the same colors give the energy loss obtained with the

stationary rate (3.10). The green lines represent this rate evaluated at t = trelease with velocity v,

which is to be contrasted against the slope of the numerical curves, shown in black.

conditions under which the rate of energy loss for a heavy quark that moves only under

the influence of the plasma can be substantially smaller than the rate obtained in [7] for

the steady-state or late-time configuration. We will return to this point in section 5.4.

As one would expect, the numerical rate of energy loss depends on zm and v. As shown

in figure 5, for fixed mass values, it varies quadratically with the velocity of the quark. As

we had mentioned before, for the small velocities that we can attain, we must deal only

with the non-relativistic approximation of the dispersion relation (3.29). This implies that

the accumulated energy loss (3.28) varies quadratically with the quark velocity v, and so
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and (∂tEq)n(0.3, v) = 0.41v2.
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Figure 6: Comparison between the accumulated energy loss (in units of
√
λT/2) versus time (in

units of 1/πT ) using (3.28) in blue and the modified Lienard formula (2.18) in red for a) zm = 0.2

and b) zm = 0.3. See text for discussion.

the constant slope that we are reading off of the trelease ≤ t ≤ tmax portion of the numerical

curves in figures 3 and 4 should be proportional to v∆v, where ∆v denotes the small change

in velocity in the given time interval. The parabolic behavior seen in figure 5, then, tells us

that ∆v ∝ v. In other words, in the leading non-relativistic version of (3.22), the friction

coefficient µ is independent of the quark velocity, as one would expect.

Unfortunately, due to limitations with the numerical integration, we have not been able

to characterize the dependence of the dissipation rate on the mass of the quark, beyond the

statement that (∂tEq)n increases roughly linearly with increasing zm/zh (decreasing m).

In particular, above zm/zh ∼ 0.75, the numeric rate becomes indistinguishable (within our

margin of error) from the stationary result (3.10).

Let us now consider the initial stage 0 ≤ t < trelease. From the beginning portion of

the curves in figures 3 and 4, we can see that the situation when the quark is subjected to

an external force is opposite to what we described above for unforced motion: the rate at
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which energy is dissipated can be substantially larger than (3.10), suggesting that in this

segment of the quark trajectory the mechanism of energy loss is qualitatively different. In

particular, the energy lost in this region is by no means negligible, which is precisely the

obstacle that prevents us from directly inferring the quark’s dispersion relation from our

numerical results, as envisioned in [7]. We had anticipated this already in the discussion

above, based on our results for the T = 0 case in section 2.

When, using the numerical data of the evolution within the plasma, we compare as

in figure 6 the energy lost by the heavy quark, eq. (3.28), against the modified Lienard

formula (2.18), we find that for t < trelease the two curves are virtually indistinguishable

from one another when zm/zh = 0.2, 0.3, and, to a lesser extent, 0.4. In fact, this approx-

imate agreement continues to hold (albeit somewhat reduced) even if in (2.18) we plug in

the data of the quark trajectory at zero temperature. In other words, for quark masses

in the phenomenologically interesting range, the quark behaves initially as if there were

no plasma, and loses energy through radiation, at a rate equal to the modified Lienard

formula given by the first term in (2.18). This is of course as one would expect from the

gauge theory perspective, for a heavy quark should indeed be insensitive to the plasma for

very early times.

On the gravity side, the issue is that, for these relatively low values of zm/zh, the

factor of h is so close to unity that the modifications induced by the black hole horizon on

Einput and Elost only become appreciable when a sufficiently large time has elapsed. We

should emphasize that it is not possible to reproduce the numerical results for v(t) and

Einput(t) = Ekin(t) + Elost(t) in this initial stage using the dispersion relation (3.19) and

dissipation rate (3.10) derived in [7] (the values of the latter are indicated by the dotted

curves in figures 3–4).

Beyond trelease the curves in figure 6 separate, showing the influence of the hot medium,

although somewhat diminished compared to the stationary result (3.10), as we know from

figures 3–4. Since it was shown in [7] that (3.10) will hold at asymptotically late times, we

expect the rate of energy loss seen in figures 2–6 to increase as the system evolves further.

Regrettably, with our very limited integration time we are not able to track the evolution

far enough to locate the characteristic transition time to the asymptotic behavior. We will

return to this issue from a different perspective in section 4.4.

3.3 Late-time behavior and worldsheet black hole

It is interesting to visualize the evolution of the system beyond the limited time interval

covered by our numerical data, in parallel with our discussion for the zero-temperature

case in section 2.3. The quark, initially static, and accelerated by an external force F (t)

between t = tgrab (originally t = 0) and t = trelease, will thereafter decelerate under the

influence of the plasma, approaching rest at some location x∞ as t→ ∞. In the dual gravity

description, this means that the final string embedding, just like the initial (t ≤ tgrab) one,

must include a static vertical segment extending all the way from the D7-branes at z = zm
to the black hole horizon at z = zh, to represent the quark at rest.

As time progresses, the lower (z = zm) string endpoint traces out the trajectory of the

quark, moving from x = 0 to x = x∞. The upper (z = zh) endpoint, on the other hand,
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remains at x = 0 for all finite times, because the wavefront generated on the string by the

acceleration of the bottom tip will reach the spacetime horizon only at t→ ∞. Given these

boundary conditions, on the x-z plane the string will clearly evolve from purely vertical

to ¬-shaped, with a horizontal segment at z = zh, extending from x = 0 to x = x∞. All

of the energy (and momentum) lost by the quark throughout its evolution ends up in this

top portion of the string, which encodes the IR region of the gauge theory. The region

of no escape is bounded as in section 2.3 by a worldsheet horizon that can be identified

by standing on the (x∞, zh) corner of the string and projecting back along the downward-

pointing light half-cone ż
(−)
null(t), now defined by

ż
(±)
null(t) =

X ′Ẋ ±
√

1 + hX ′2 − Ẋ2

h

X ′2 + 1
h

. (3.30)

The resulting curve zBH(t) descends from z → ∞ before t = tgrab, reaches a minimum

value of the radial coordinate, and then moves up again, finally approaching the ‘corner’

as t → ∞. The upward segment lies fully within the maximally-disturbed region of the

worldsheet, located between the upward null curves zgrab(t) and zrelease(t) obtained by

integrating (3.30) with the upper choice of sign and with initial condition zgrab(tgrab) = zm
or zrelease(trelease) = zm, respectively. A lower bound on the location of the upward portion

of zBH(t) is given by the (upward segment of the) stationary limit curve zergo(t), defined

as the locus where gtt = 0, i.e., Ẋ2 = h. The situation is summarized in figure 7.

If, instead of releasing the quark, we pull it with constant velocity v for an arbitrarily

long period of time (i.e., if trelease → ∞), then we approach the steady-state configuration

of [7, 8], and in so doing stabilize the worldsheet horizon (as well as the stationary-limit

curve) at z = zv ≡ (1 − v2)1/4, just like in [20, 19] (and [29]).

The behavior of the string long after trelease was determined quantitatively in [7], and

is of the form X(z, t) = x∞ − A(z)e−µlatet, with the friction coefficient µlate given by the

lowest quasi-normal frequency. It was shown there that the imposition of a purely ingoing

boundary condition near the spacetime horizon z = zh forces the string to deviate from

the vertical by a divergent amount (A(z) → ∞ as z → zh). This is consistent with the

development of a ‘corner’, just as we have argued above for the case where the quark is

initially static.

Just as we found at T = 0, we see here that energy dissipation seems to be irrevocably

tied to the appearance of a worldsheet black hole. Since our numerical results show that

the initial energy loss is controlled by a friction coefficient µearly < µlate, it would appear

like in the unforced case the asymptotic rate sets in only when the string is sufficiently

close to its final ¬ shape. It would be interesting to establish a more detailed connection

between the instantaneous rate of energy dissipation from the quark and the rate at which

energy crosses the worldsheet horizon, generalizing the results of [20, 19] for the stationary

configuration.

4. Quark-antiquark evolution

A string with both of its endpoints on the D7-branes describes a quark-antiquark pair.
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Figure 7: Schematic illustration of the string worldsheet (the rectangle shaded in gray), projected

for convenience onto the spacetime x-z plane. To aid the visualization of the evolution, snapshots of

the string are given for three different instants: at (any time up to) t = tgrab (thin dotted orange),

when the string is at rest and vertical at x = 0; at t = trelease (thick solid orange), when it has

already been partially deformed by the application of the external force F (t); and at t → ∞ (thin

solid orange), when it has adopted a ¬ shape, and its vertical segment has come to rest at x = x∞.

The diagram additionally shows the upward null (fixed ttret) curves zgrab and zrelease (solid green),

the stationary limit curve zergo (dotted blue), and the event horizon zBH (thick dotted red) above

which lies the worldsheet black hole (shaded light red). See text for discussion.

The situation that is closest to modeling the dual process of primary phenomenological

relevance, where a heavy quark and antiquark are created within the plasma at time t = 0

and then separate from one another, is such that the string endpoints start out with

coincident positions but different velocities. In a first exploration of this system, it is

interesting enough to consider the simple case where the string endpoints are taken to

separate back-to-back with the same initial speed v0, meaning that the pair’s center of

mass frame coincides with the plasma rest frame. We will let x denote the direction

of motion.

4.1 Review of earlier results

A numerical study of this problem was carried out in [7]. It was found that the quark

and antiquark trajectories can be more efficiently followed to later times if instead of

describing the string embedding Xµ(τ, σ) in the obvious static gauge τ = t, σ = z, one

astutely chooses worldsheet coordinates for which the constant τ slices manage to reach

larger values of x near z = zm while staying away from the horizon at z = zh. This is most

easily implemented by working with the Polyakov (rather than Nambu-Goto) action

SP = − 1

4πα′

∫ ∞

−∞
dτ

∫ π

0
dσ

√−ggabGµν∂aX
µ∂bX

ν ≡ R2

2πα′

∫

d2σLP , (4.1)

with gab the intrinsic metric on the string worldsheet, and making the non-standard gauge

choice gττ = −s, gσσ = 1/s, gστ = 0. The ‘stretching factor’ s = s(σ, τ) implicitly
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defines our choice of worldsheet coordinates, and is meant to be adjusted by hand to

keep the numerical integration away from the horizon for the longest possible time. For

a given trajectory, it is the function z(τ, σ) that determines the proximity to the horizon,

so this goal is achieved by setting s = s(z(τ, σ)) (at the level of the equations of motion).

Following [7] we will use s ∝ (zh − z)p in the examples below.

In this setting, the evolution of the string is controlled by the equations of motion

∂τ

(

hṫ

sz2

)

− ∂σ

(

sht′

z2

)

= 0 , (4.2)

∂τ

(

ẋ

sz2

)

− ∂σ

(

sx′

z2

)

= 0 ,

∂τ

(

ż

shz2

)

− ∂σ

(

sz′

hz2

)

=
1

2s

[

(ż2 − s2z′2)∂z

(

1

hz2

)

− (ṫ2 − s2t′2)∂z

(

h

z2

)

−(ẋ2 − s2x′2)

(

2

z3

)]

,

(where ˙≡ ∂τ , ′ ≡ ∂σ ,) supplemented with the constraints

− hṫt′ + ẋx′ + h−1żz′ = 0 , (4.3)

−h(ṫ2 + s2t′2) + (ẋ2 + s2x′2) + h−1(ż2 + s2z′2) = 0 ,

which as always amount to the statement that the intrinsic metric on the worldsheet must

be proportional to the induced metric (thereby establishing the classical equivalence with

the Nambu-Goto formalism). Given initial data that satisfy (4.3), the requirement that

the constraints continue to hold throughout the evolution gives an important consistency

check on the numerical integration. The results we will report throughout this section

were obtained with Mathematica 5.2’s NDSolve integration routine, with the constraints

typically satisfied at the 10−5 or 10−6 level.

In terms of the momentum densities Πa
µ ≡ ∂LP /∂(∂aX

µ), we see that, as usual, the

first two equations in (4.2) express the conservation of the Noether currents Πa
t and Πa

x,

respectively associated with invariance under translations in t and x. To describe a quark-

antiquark pair that is not acted upon by any agent other than the plasma, we must choose

the standard Neumann/Dirichlet boundary conditions

t′(τ, 0) = t′(τ, π) = 0 , x′(τ, 0) = x′(τ, π) = 0 , z(τ, 0) = z(τ, π) = zm ∀ τ . (4.4)

The total energy

E =
R2

2πα′

∫ π

0
dσ (−Πτ

t ) =

√
λ

2π

∫ π

0
dσ

hṫ

sz2
(4.5)

and x-momentum

P =
R2

2πα′

∫ π

0
dσΠτ

x =

√
λ

2π

∫ π

0
dσ

hẋ

sz2
(4.6)

of the string are then conserved.

For the problem at hand, the authors of [7] identified a one-parameter family of initial

conditions that correctly satisfy the constraints (4.3) and are compatible with the boundary
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conditions (4.4). Working from now on in units where zh = 1/πT = 1, these conditions

take the form

t(0, σ) = 0 , ṫ(0, σ) = A , (4.7)

x(0, σ) = 0 , ẋ(0, σ) = A
√

1 − z4
m cos σ ,

z(0, σ) = zm , ż(0, σ) = A[1 − z4
m] sinσ ,

and describe a string that is pointlike at t = 0 and grows for t > 0 as a result of its non-zero

initial velocity

vx(σ) =
ẋ

ṫ
=
√

1 − z4
m cos σ , vz(σ) =

ż

ṫ
= [1 − z4

m] sinσ . (4.8)

The parameter A (which has been rescaled here by a factor of
√

1 − z4
m with respect to [7])

controls the energy (4.5) of the configuration,

E =

√
λ

2π

∫ π

0
dσ

(

hṫ

sz2

)

τ=0

=

√
λ

2

(1 − z4
m)A

z2
ms(zm)

. (4.9)

As expected, the total x-momentum vanishes.

Using the initial conditions (4.7), it was found in [7] that, depending on the value of

E, the subsequent behavior of the string endpoints can be of two different types. When

the energy of the pair is large enough (essentially, E > 2Mrest) the quark and antiquark

move apart and are able to escape from one another’s influence, so they simply slow down

monotonically until they are finally (at t = ∞) brought to rest by the plasma. For low

E, on the other hand, the mutual attraction of the quark and antiquark manages to stop

them and make them reverse direction, after which they undergo a number (larger than

one quarter) of oscillations before dissipating all of their energy to the plasma. During

consecutive half-cycles the body of the string is alternately above and below the z = zm
line, as a result of which the corresponding motion is asymmetric.6

4.2 Generalized initial conditions

Intuitively, it should be possible to generalize the initial velocity profiles (4.8) proposed

in [7] to more general functions vx(σ), vz(σ), which amounts to stipulating that ẋ(0, σ) =

Avx(σ), ż(0, σ) = Avz(σ). Based on the symmetry of our problem, for simplicity we restrict

attention to functions vx(σ) that are odd on the interval [0, π]. Compatibility with the

Neumann boundary condition in (4.4) requires that v′x(0) = 0, the Hamiltonian constraint

6Configurations where the string lies below its endpoints have been considered previously in [29, 30]. In

such circumstance, one suspects that the string would prefer to shrink by sliding its endpoints along the

D7-branes, moving them closer to the boundary and to each other. To examine this question, however, one

must remember: first, that the boundary conditions for the string are purely Neumann or Dirichlet only

when the D7-brane embedding is described in the original Cartesian coordinates, and are actually mixed

in the spherical coordinates that are naturally employed after taking the AdS/CFT limit; second, that the

string coordinates on the S
5 describe the internal SU(4) degrees of freedom of the quark, which one may

or may not wish to fix externally.
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Figure 8: (a) Three different initial velocity profiles for the string: cosσ (solid), cos3 σ (dashed),

and cos 3σ (dashdotted). (b) The corresponding trajectories for the σ = 0 string endpoint, for quark

mass parameter zm = 0.2. Even though all 3 configurations have the same energy E/2Mrest = 2.45

and initial quark velocity v0 = 0.9992, the evolution of the quark is clearly rather different in each

case.

in (4.3) determines vz(σ) in terms of vx(σ), and the Dirichlet boundary condition in (4.4)

demands that vz(0) = 0. Altogether, then, we find that we are allowed to choose

t(0, σ) = 0 , ṫ(0, σ) = A , (4.10)

x(0, σ) = 0 , ẋ(0, σ) = Avx(σ) ,

z(0, σ) = zm , ż(0, σ) = A
√

1 − z4
m

√

1 − z4
m − vx(σ)2 ,

with vx(0) =
√

1 − z4
m and v′x(0) = 0, which constitutes an infinite-parameter generaliza-

tion of the initial conditions (4.7).

The energy of all of these configurations is given by the same formula (4.9). Since

the string is initially a point, it might seem peculiar that one can physically distinguish

among various possible velocities for its different ‘internal points’— one might suspect

that the seemingly different initial profiles (4.10) are all related to each other by gauge

transformations. That this is not the case can be seen most straightforwardly by evolving

a few of these initial configurations forward in time: as shown in figure 8, the resulting

spacetime trajectories are found to be distinct. Notice in particular that in the dashdotted

trajectory the quark actually reverses direction before coming to rest, which shows that the

boundary between oscillatory and non-oscillatory behavior depends strongly on the way in

which the gluonic field (dual to the string) is excited. So the moral of the story is that,

while the string is initially a point in spacetime, it is most definitely not a point in phase

space, and it is this fact that allows the existence of a truly infinite-dimensional family of

initial conditions.

The question of the gauge-dependence of our description does however serve to high-

light a useful point: instead of sampling different initial conditions by varying the functional

form of vx(σ) in (4.10) (for a fixed choice of the worldsheet coordinate σ), we can keep the

form of vx(σ) fixed and change the meaning of σ. One way to do the latter is to modify

our choice of the initial stretching factor s(0, σ). It is easy to see that this indeed leads to

different spacetime trajectories, even if the initial energies (4.9) are appropriately matched.
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Conversely, when tweaking s(τ, σ) to find the choice that optimizes the numerical integra-

tion for a given physical string configuration, one must keep the initial stretching factor

s(0, σ) fixed, to ensure that the initial conditions for the evolution do not change. For

our calculations we found it convenient to use s(τ, σ) = (1 − z(τ, σ))p/(1 − zm)p−1, with

adjustable p.

It is natural to wonder what the interpretation of the different initial conditions (4.10)

is in the dual SYM language. The answer is provided to us by the standard recipe for

correlation functions [2]: different time-dependent string profiles correspond to different

time-dependent configurations of the gluonic fields [56, 41]. Just like the string embedding

is not completely characterized by giving the location of its endpoints, the initial state

of the gauge theory is not uniquely characterized by specifying the position of the quark

and antiquark. This is of course true already in zero-temperature QED, but in that case

the linear character of the equations of motion makes it easy to identify, for a given field

configuration, the portion that is directly ascribable to the sources of interest.

Notice from (4.10) that the initial velocity of the quark, v0 ≡ vx(0) =
√

1 − z4
m, is not

a free parameter of the system, but is uniquely fixed by the choice of zm, or equivalently,

by the quark’s Lagrangian mass m, according to (3.1). The reason for this is easy to

understand on the string theory side. At t = 0, the pointlike string happens to obey not

only ż = 0, in compliance with (4.4), but also z′ = 0, according to (4.10), as would befit

an endpoint that is free in all spacetime directions. It is well-known that the endpoints of

such a string must move at the speed of light (see, e.g., [61]), and, given that the endpoints

are located at z = zm, we see from (2.1) that, indeed, a coordinate velocity vx =
√

1 − z4
m

corresponds precisely to a proper velocity Vx ≡ vx/
√−Gtt = 1, a fact that was first pointed

out in [35].7 In the gauge theory, this identification confers then a special status to the

mass-dependent velocity

vm ≡
√

1 − z4
m , (4.11)

whose meaning will be discussed further in the next subsection.

At least from the gauge theory perspective, one would expect to be able to find con-

figurations in which the initial quark velocity v0 is freely adjustable. Given the discussion

of the previous paragraph, we see that on the AdS side this can be achieved with initially

coincident string endpoints only if we choose z′ 6= 0. To satisfy the first constraint in (4.3)

we must then set ż = 0. Picking for the string a velocity profile vx(σ) that is an arbitrary

odd function on the interval [0, π], the complete second set of allowed initial conditions is

7The same reasoning in fact applies to ‘all points’ on the string: their proper initial velocities

Vx(σ) ≡
vx(σ)

√
1 − z4

m

, Vz(σ) ≡
vz(σ)

1 − z4
m

=

p

1 − z4
m − vx(σ)2

√
1 − z4

m

,

clearly satisfy V 2

x + V 2

z = 1, independently of the choice of vx(σ).
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then

t(0, σ) = 0 , ṫ(0, σ) = A , (4.12)

x(0, σ) = 0 , ẋ(0, σ) = Avx(σ) ,

z(0, σ) = ζ(σ) , ż(0, σ) = 0 ,

with ζ(σ) an even function on the [0, π] interval, which satisfies ζ(0) = zm for compatibility

with the Dirichlet boundary condition in (4.4), and

ζ ′(σ) = ±A
√

1 − ζ(σ)4

s(ζ(σ))

√

1 − ζ(σ)4 − vx(σ)2 , (4.13)

to comply with the Hamiltonian constraint in (4.3). By construction, the initial quark

velocity can now be chosen arbitrarily, as long as v0 ≤ vm in order for the right-hand side

of (4.13) to be real at σ = 0, π. The energy (4.5) of the configuration is now given by

E =

√
λ

2π

∫ π

0
dσ

(

hṫ

sz2

)

τ=0

=

√
λA

2π

∫ π

0
dσ

1 − ζ4

s(ζ)ζ2
. (4.14)

The linear x momentum is still zero.

Conditions (4.12) describe a linelike string that extends purely along the radial AdS

coordinate, stretching upward from z = zm up to some turning point z = ζ(π/2) and then

returning back down to z = zm. The function ζ(σ) will be smooth at the turning point

only if ζ ′(π/2) = 0, which combined with (4.13) and the requirement vx(π/2) = 0 implies

that ζ(π/2) = 1, i.e., the string turns around at the horizon. For this to occur, given

an initial velocity profile vx(σ), the value of A must be tuned in order for the numerical

solution of (4.13) to reach ζ = 1 precisely at σ = π/2. So for these initial conditions,

where v0 is a free parameter, A is not. Having determined ζ(σ), one can proceed as before

to the numerical integration of the equations of motion (4.2). A few representative quark

trajectories are shown in figure 9, with vx(σ) = v0 cosσ and s = (1 − z)1/2 (chosen to

simplify the equation of motion and increase the stability of the numerical integration

needed to obtain the initial profile ζ(σ)).

The existence of the two qualitatively distinct sets of initial conditions for the string

describing the creation of a quark-antiquark pair has a direct field-theoretic interpretation:

the product of a fundamental q and an antifundamental q̄ can lead to a q-q̄ pair either

in the singlet or the adjoint representation of the SU(Nc) gauge group, and each of the

above string configurations is dual to one of these. Indeed, the linelike string (4.12) is

precisely the system considered in [45, 37, 62, 18] to model a color source in the adjoint

representation. Due to its extended nature, it sets up long-range supergravity fields that

translate through the standard recipe of [2] into a long-range gluonic field profile, indicative

of a source with net color charge. The completely pointlike string (4.10), on the other hand,

sets up no long-range chromoelectromagnetic field and so describes the singlet. Given this

correspondence, it is interesting that the AdS/CFT duality predicts that (at large Nc and

large λ) the initial quark velocity is freely adjustable in the adjoint, but not the singlet,

configuration.
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Figure 9: Quark trajectories for adjoint q-q̄ configuration, for zm = 0.2 and v0 = vm (solid),

v0 = 0.75vm (dashed), v0 = 0.5vm (dashdotted). The corresponding energies are E/2Mrest =

2.86, 1.38, 1.13. In this case no oscillating configurations are found.

4.3 Limiting velocity

In the previous subsection we have learned that the initial velocity of the quark and an-

tiquark at the moment of the pair’s creation is bounded above by the speed vm defined

in (4.11). The reason for this is easy to understand on the string theory side of the duality,

since, as we have noted above, the coordinate velocity vx = vm corresponds to a proper

velocity Vx equal to that of light at the position of the string endpoints, z = zm [35]. The

interesting feature is that it is vx, and not Vx, that corresponds to the gauge theory velocity.

We would naturally expect the restriction to subluminal velocities, v ≤ vm, to apply to

more general string configurations. In complete analogy with the point particle case, the

easiest way to deduce this restriction is to go back to the Nambu-Goto action (2.2), and

observe that the requirement that it be real (i.e., that the string worldsheet be timelike)

imposes a bound on physically realizable embeddings. Indeed, working for simplicity in

the static gauge τ = t, σ = z, it is easy to see that the Nambu-Goto square root is real

only as long as the embedding function ~X(z, t) satisfies

(

∂ ~X

∂t

)2

≤ h
1 + h

(

∂ ~X
∂z

)2

1 + h
(

∂ ~X
∂z

)2
sinα

, (4.15)

where α ≡ ∠(∂ ~X/∂t, ∂ ~X/∂z). For a string that moves and stretches along a single direction

x, as we have considered up to now, α = 0 or π and this reduces to

(

∂X

∂t

)2

≤ h

(

1 + h

(

∂X

∂z

)2)

. (4.16)

It might seem peculiar that, as long as the string segment under consideration is

not vertical (∂X/∂z 6= 0), the bound (4.16) allows the proper velocity of the segment,

(1/
√
h)∂X/∂t, to exceed the speed of light (by an amount that becomes arbitrarily large

in the limit |∂X/∂z| → ∞). One should note, however, that this is a gauge-dependent

statement, because unless the string segment is vertical, x is not entirely transverse to it,
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and the longitudinal component of the string motion is of course unphysical (in particular,

motion along x is entirely unphysical in the limit |∂X/∂z| → ∞, where the string becomes

horizontal). From (4.15) we can see that, for purely transverse motion, α = ±π/2 (as

in the meson configurations we will consider in section 5), the proper velocity is indeed

required to be less than unity, i.e., the coordinate (or, equivalently, gauge theory) velocity

is bounded by
√

1 − z4.

The argument of the preceding paragraph applies to a generic point in the interior of

the string, but the situation is different for the endpoints, where motion along the body of

the string is physical. As we know, a string endpoint on the D7-branes is dual to a quark

(or antiquark), so the velocity ~v of the latter must necessarily respect the bound (4.15),

or, for collinear motion, (4.16). Evaluating this last equation at z = zm and parametrizing

as in sections 2 and 3 the ∂X/∂z-dependence in terms of the momentum density Π ≡ Πz
x

given by (2.3), which controls the external force F = (
√
λ/2π)Π applied to the quark, we

deduce that v is bounded by

v ≤ hm
√

(hm − z4
mΠ2)(1 + z4

mΠ2)
=

v2
m

√

(v2
m − λF 2/4π2m4[]4)(1 + λF 2/4π2m4[]4)

, (4.17)

where hm ≡ h(zm) and [] denotes the expression within brackets in (3.1).

For the case we have considered in the previous two subsections, where the string

endpoint is free, corresponding to a quark that evolves only under the influence of the

plasma, (4.17) is precisely the statement that v ≤ vm. As expected, we see that this

bound (or, more generally, the analogous bound deduced from (4.15)) applies not only to

quark-antiquark configurations, but also to isolated quarks.8

For the case where the quark is externally forced, on the other hand, the bound (4.17)

becomes less restrictive: as F increases, the quantity on the right grows monotonically,

and in fact diverges when the force approaches the critical value Fcrit = (
√
λ/2π)hm/z

4
m

mentioned already in section 3.2 (this is the same as the divergence seen in (4.15) and (4.16)

when ∂X/∂z → ∞). From this perspective alone, then, it would seem possible to take the

quark to velocities larger than vm while exerting a force on it (even though, after release,

one would again have v ≤ vm).

It is not guaranteed, however, that this possibility is realized in practice. In the forced

stationary case considered in [7, 8], for instance, it is found that v > vm would necessarily

require F > Fcrit, and is consequently unattainable [20]. More generally, the question of

whether vm is limiting or not is dynamical in nature, and essentially depends on the form

of the thermal dispersion relation for the quark. In the discussion following (3.25) we noted

that, based on our zero-temperature results of section 2, the quark’s intrinsic energy Eq

(and momentum pq) should diverge as F → Fcrit. Given the connection between the 1− v2

factor in the denominator of (3.25) and the Lorentz invariance of the metric (2.1) at T = 0,

it is natural to expect it to be replaced by hm − v2 = v2
m − v2 at finite temperature, which

would imply that Eq → ∞ (and pq → ∞) as v → vm, meaning that v > vm is physically

8This observation has also been made very recently in [30]. Simultaneously, vm has been shown to

emerge as a limiting velocity directly from the microscopic meson dispersion relation [39]. Both of these

works appeared while the present paper was in preparation.
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unattainable. The results we will obtain in section 5.3 appear to support this expectation,

but it would certainly be nice to be able to show this directly.9

4.4 Transition to asymptotic regime

For the non-oscillatory string trajectories with the one-parameter family of initial con-

ditions (4.7), it was found in [7] that the late-time quark motion is independent of the

energy E of the configuration, and coincides with the behavior expected from a particle

with relativistic dispersion relation p ∝ v/
√

1 − v2, subject to a damping force

dp

dt
= −µp , (4.18)

with µ a p-independent friction coefficient that was tabulated in [7] for various values of

zm, and which is consistent with the drag force (3.10) obtained in [7 – 9] for the stationary

configuration.

The agreement between the analytic and late-time numeric results is most cleanly seen

if instead of comparing graphs of x(t) or v(t) for the quark (where one would need to look

at t → ∞), one examines the plots of v(x),10 where the analytic behavior for constant µ

takes the simple form

v(x) = tanh[µ(x∞ − x)] , (4.19)

which is linear with slope −µ near the final rest point x = x∞ (whose value is meant to

be adjusted to fit the data). These plots are shown in figure 10, where it is seen that the

late-time behavior is well-described by (4.19) also for oscillating trajectories and for the

more general singlet configuration (4.10), as well as for the adjoint configuration (4.12).

Notice that the agreement holds in the late-time regime where (4.19) reduces to a linear

expression, but, as in the cases studied by the authors of [7], it extends beyond the range

covered by their general quasi-normal mode analysis, because the velocity of the quark is

not necessarily small.

In figure 10, we see that there is an initial period where the behavior differs from

the late-time frictional evolution (4.19). This difference is clearly more significant for the

singlet than the adjoint case. The time that must elapse before the asymptotic behavior

sets in becomes arbitrarily large for singlet configurations that are close to being oscillatory.

In these cases, essentially all of the energy of the quark is lost not through the constant-

µ frictional force due to the plasma, but as a result of the chromoelectromagnetic force

exerted by the antiquark.

On the string theory side of the duality, the issue is that, as the initially pointlike

string grows and falls toward the black hole, it takes some time before it is close enough

to z = 1 to be deformed into (two juxtaposed copies of) the asymptotic ¬ shape discussed

in section 3.3. This picture seems rather close to the phenomenological discussion given

in [50] (in the context of collisional energy loss): when the singlet quark-antiquark pair is

formed within the plasma, there is a delay before the interaction between the newly created

9For mesons this was done recently in [39], which appeared while this paper was in preparation.
10We thank Antonio Garćıa for suggesting this.
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Figure 10: Quark evolution (velocity as a function of traveled distance, in units of 1/πT ) for five

different initial conditions. To explore the neighborhood of the charm quark, the mass parameter

has been chosen as zm = 0.2, corresponding to a limiting velocity vm = 0.9992. The dotted

curves show the results of our numerical integration, contrasted against fits in solid red that use

the analytic expression (4.19), with the value µ = 0.25 obtained in [7] and an optimal choice of

the stopping distance x∞. The three dotted curves starting at the same point describe singlet

configurations (and therefore have v0 = vm, as explained in the main text). The green, magenta

and purple curves correspond respectively to total energies E/2Mrest = 2.45, 2.45, 1.01 and initial

string velocity profiles v0 cosσ, v0 cos3 σ and v0 cosσ (leading to x∞ = 4.15, 3.07, 0.12). Notice in

particular that the purple curve describes a situation where the quark and antiquarks turn around

and come to rest while approaching one another. The two remaining curves arise from adjoint

configurations with different energies and initial quark velocities: the case E/2Mrest = 1.12 and

v0 = 0.5vm (leading to x∞ = 2.07) is shown in dark blue, while E/2Mrest = 1.05 and v0 = 0.35vm

(x∞ = 1.4) is shown in light blue.

sources and the plasma can set up the long range gluonic field profile that is responsible

for the late-time dissipation.

To examine in more detail the transition to the late-time behavior (4.19), for a variety

of trajectories we have determined the point (xf , vf ) beyond which the numeric v(x) curve

agrees with the analytic curve (4.19) to the accuracy indicated by the fraction f . Even

though, judging by the effect of halving the grid spacing, our numerical results seem to be

accurate to at least 1%, the precision with which we can determine (xf , vf ) is limited by

the uncertainty in the fitting parameter x∞, which we estimate to be of order 5-10%. It

does not make much sense therefore to consider a value of f smaller than this.

A representative sample of our results for f = 0.1 and f = 0.05, in the case of singlet

configurations is shown in figure 11. The two sets of data have somewhat different functional

forms, but are consistent with one another within the rather large margin of error. The

general tendency is for xf to approach zero as vf → vm.

For adjoint configurations, we find that the numeric v(x) curves are within 5-10%

of (4.19) already at the start of the evolution, so, to be consistent with our pre-established

criterion, in this case we must identify the transition length as essentially xf = 0. It is
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Figure 11: Transition distance xf (in units of 1/πT ) as a function of the transition velocity vf , for

f = 0.1 (red) and f = 0.05 (magenta). The size of the dots gives a rough indication of the margin

of error.

still worth noting, however, that there is an initial period where the functional form of

the numeric and analytic plots is different, as can be seen in figure 10. This difference is

negligible for small initial velocities, and becomes more pronounced (both in magnitude

and in duration) as v0 increases. The transition length identifiable at the 3-4% level thus

follows a trend opposite to the one for the singlet case. Nonetheless, up to the velocities

vf ∼ 0.5 that we have been able to explore (corresponding to v0 ∼ vm), it remains smaller

than the singlet xf shown in figure 11.

A question worth considering is whether the transition to the regime where the quark

experiences a constant drag coefficient occurs right after the quark and antiquark are

screened from each other by the plasma, or if there is an intermediate regime where the

quark moves independently from the antiquark but nevertheless feels a drag force that

differs from the stationary result of [7 – 9], as we found when applying an external force in

section 3.2. To answer this question, we will determine the relevant screening length in the

next section.

It would also be very interesting to develop an interpretation of energy loss for the

evolving quark-antiquark pair in parallel with the picture for an isolated quark proposed

by Mikhailov [52] and developed further in sections 2, 3. An effort in this direction was

in fact made in the work [63], but regrettably we do not understand its use of trajectories

that lie outside of the string worldsheet. We suspect that a treatment based on null curves

on the worldsheet should be possible. Of course, progress is again hampered by the lack

of an analytic solution describing the back-to-back q-q̄ evolution considered in this section

(or even its counterpart at zero temperature). Another potentially confusing issue is the

fact that, in contrast with the isolated quark case, there are now two string endpoints

at z = zm, and a priori it would be possible for null trajectories to ‘bounce’ repeatedly

between them. One should however bear in mind that, at least beyond some finite interval

of time, this would be prevented by the formation of a worldsheet horizon analogous to the

one discussed in sections 2.3, 3.3.

– 39 –



J
H
E
P
0
6
(
2
0
0
8
)
0
0
5

5. Quark-antiquark potential

5.1 Review of earlier results

The potential E(L) for an infinitely massive static quark and antiquark in a strongly-

coupled N = 4 SYM plasma was determined in [64],11 using the dual description of the

pair in terms a string with both of its endpoints on the AdS boundary z = 0. As expected,

for small quark-antiquark separation L, the effects of the plasma are negligible and the

potential matches the zero-temperature result [65]

E(L) = −
4π2
√

g2
YMN

Γ(1
4)

4
L

. (5.1)

As the separation grows, however, the effects of the plasma progressively screen the quark

and antiquark from one another, and as a consequence raise the system’s energy above the

Coulombic behavior. The ∩-shaped string embedding that is employed for the calculation

exists only up to a maximal separation Lmax = 0.865/πT , and its energy exceeds that of

the disconnected solution beyond the somewhat smaller distance L∗ = 0.755/πT . In the

Nc, λ → ∞ limit where the string-theoretic calculation is easy to carry out, the potential

has a kink at L∗, and beyond this point the string path integral is dominated instead

by a configuration with high worldsheet curvature which for large L describes graviton

exchange between two disconnected strings, leading to a tail E(L) ∼ −T exp(−L/Lgap),

with Lgap = 0.428/πT [38].

This computation can easily be extended to the case where the q-q̄ pair moves with

velocity v with respect to the plasma, to obtain the energy E(L, v) of the pair [28, 27].

For any v, the potential reduces to (5.1) at small L. The main overall effect of increasing

the velocity is to move the non-Coulombic portion of the E(L, v) curve down and to the

left, leading in particular to the identification of the two screening lengths L∗ = Lmax

for v ≥ 0.447.

The function Lmax(v) was determined numerically in [32, 28] (and a related length

was plotted in [31]).12 Over the entire range 0 ≤ v ≤ 1 its behavior may be approximated

as [28]

Lmax(v) ≈
0.865

πT
(1 − v2)1/3 , (5.2)

while in the ultra-relativistic limit, it can be shown analytically that [32]

Lmax(v) →
1

πT

3−3/44π3/2

Γ(1/4)2
(1 − v2)1/4 ≃ 0.743

πT
(1 − v2)1/4 for v → 1. (5.3)

The full curve Lmax(v) does not deviate far from this asymptotic form, so a decent ap-

proximation to it is obtained by replacing 0.743 → 0.865 in (5.4), to reproduce the correct

11For the corresponding weak coupling calculation in QCD, see, e.g., [66] and references therein.
12The works [32, 27] additionally explored the dependence of Lmax on the angle θ between the direction

of motion and the dipole axis (which was fixed at θ = π/2 in [28]), finding it to be weak.

– 40 –



J
H
E
P
0
6
(
2
0
0
8
)
0
0
5

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

v

Lmax

Figure 12: Screening length Lmax (in units of 1/2πT ) as a function of velocity (in black) compared

against the approximations (5.2) (in red) and (5.4) (in blue).

value at v = 0 (at the expense of introducing a 16% error as v → 1) [32]:

Lmax(v) ≈
0.865

πT
(1 − v2)1/4 . (5.4)

A comparison between the two approximations (5.2) and (5.4) is shown in figure 12:

overall, the exponent 1/3 is better than 1/4 in the sense that it implies a smaller squared

deviation from the numerical results, even though 1/4 leads to a smaller percentage error in

the range v > 0.991 (γ > 7.3). An attempt to better parametrize the deviation away from

the ultra-relativistic behavior was made in [36]. In any case, one should bear in mind that

the region of principal interest at RHIC is not really v → 1, but γv ∼ 1 (see, e.g., [67]).

It is interesting to consider how these results generalize to the case where the quark

and antiquark have a large but finite Lagrangian mass m, which as reviewed in section 2

corresponds to letting the flavor D7-branes extend up to a position zm > 0 given by (3.1).

As explained in section 3.2, from the phenomenological perspective we are mostly interested

in values of the mass parameter zm in the range zm/zh ∼ 0.2 − 0.4, which corresponds to

the charm mass.

5.2 Finite mass at zero temperature

In a static configuration, the equation of motion for the string amounts to the statement

that the momentum density Πz
x given by (2.3) is independent of x. In the pure AdS

geometry (i.e., in the metric (2.1) with T = 0) the resulting embedding is [65]

X(z) = ±zmax

∫ zmax/z

1

dζ

ζ2
√

ζ4 − 1
, (5.5)

where zmax ∈ [zm,∞) denotes the turning point of the ∩-shaped string and the plus or

minus sign applies respectively to its right and left half. From this it follows in particular

that the distance between the string endpoints at z = zm (i.e., the q-q̄ separation) is

L = 2zmax

∫ zmax/zm

1

dζ

ζ2
√

ζ4 − 1
= 2zmax

[

−1

4
B

(

(

zm
zmax

)4

;
3

4
,
1

2

)

+

√
πΓ(3

4 )

Γ(1
4)

]

, (5.6)
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where B denotes the incomplete Euler beta function. The energy of the ∩-shaped string,

renormalized by subtracting the energy of two purely radial strings, follows from (2.2) as

E =

√
λ

πzmax

{

∫ zmax/zm

1
dζ

[

ζ2

√

ζ4 − 1
− 1

]

− 1

}

. (5.7)

The corresponding results for the case of a moving q-q̄ pair are of course determined in

terms of these by Lorentz invariance.

Using (5.6) and (5.7), it is easy to see that for L≫
√
λ/m (i.e., zmax ≫ zm) the quark-

antiquark potential E(L) approaches the same Coulombic form (5.1) as in the infinitely

massive case (zm = 0). On the other hand, in the short distance limit L → 0 we have

zmax → zm and so the potential is linear,

E(L) = 2m

[

−1 +
π√
λ
mL+ O

(

(

mL√
λ

)2
)]

. (5.8)

These results are consistent with the form of the gluonic field around an isolated finite-

mass quark [59],

〈OF 2(~x)〉q =

√
λ

16π2|~x|4











1 −
1 + 5

2

(

2πm|~x|√
λ

)2

(

1 +
(

2πm|~x|√
λ

)2
)5/2











(5.9)

=

√
λ

128π2

[

−
(

2πm√
λ

)4

+
7

4|~x|4
(

2πm|~x|√
λ

)6

+ . . .

]

(where OF 2 = Tr{F 2+. . .}/4g2
YM denotes the operator dual to the dilaton field [68]), which

is Coulombic at long distances and non-singular at the location of the quark.

In both (5.8) and (5.9) we are seeing the effect of a color charge distribution that

cloaks the fundamental sources, or in other words, of the gluon (and scalar, etc.) cloud

that surrounds the would-be bare quark to turn it into a ‘dressed’ or ‘composite’ quark, in

line with the inferences we made in section 2.2. Notice from (5.9) that the size of this cloud

is not the Compton wavelength of the quark, 1/m (indicating that it is not made of virtual

quarks and antiquarks), but the much larger scale
√
λ/m, which is the characteristic size

of the deeply bound microscopic mesons of the theory [69, 70, 59]— so perhaps it would

be more appropriate to refer to this charge distribution as a ‘meson cloud.’

5.3 Finite mass at finite temperature

We will consider first the case where the quark-antiquark pair is static with respect to the

plasma. Repeating the calculation of the previous subsection for T > 0, the separation

between the quark and antiquark is found to be

L = 2zmax

∫ zmax/zm

1
dζ

√

1 − ζ4
h

ζ4 − ζ4
h

1
√

ζ4 − 1
, (5.10)

– 42 –



J
H
E
P
0
6
(
2
0
0
8
)
0
0
5

with ζh ≡ zmax/zh, and the renormalized energy of the pair is given by

E =

√
λ

πzmax







∫ zmax/zm

1
dζ





√

ζ4 − ζ4
h

ζ4 − 1
− 1



 − 1







. (5.11)

From (5.10) and (5.11), the short-distance behavior of the potential is now

E(L) =

√
λ

π



−
(

1

zm
− 1

zh

)

+
L

2z2
m

√

1 −
(

zm
zh

)4

+ O
(

(

L

zm

)2
)



 , (5.12)

with zm related to the quark Lagrangian mass m through (3.1). By comparing with

numerical plots (as in figure 13 below), this linear expression can be seen to give a good

approximation of the actual potential at least up to L ∼ zm/2.

The constant term in (5.12) is clearly nothing but (minus) the thermal rest mass (3.11)

of the isolated quark and antiquark, which was subtracted in our choice of renormaliza-

tion. For any L, the force Fpot(L) ≡ −dE/dL deduced from the potential balances the

external force

Fext(L) ≡ dp

dt
=

√
λ

2π
Πz

x|z=zm
= ∓

√
λ

2πz2
max

√

1 −
(

zmax

zh

)4

(5.13)

required to hold the string endpoint in place, and the coefficient of the linear term in (5.12)

correctly encodes the L → 0 (zmax → zm) limit of this force. Using (2.1) and (4.11), this

can in turn be rewritten in the form

Fext(0) = ∓π
2

√
λT 2 v2

m
√

1 − v2
m

, (5.14)

which coincides with the drag force (3.10) computed with a trailing string in [7, 8], evaluated

at the velocity v = vm. This agreement has a simple interpretation. As explained in [20],

the drag force calculation of [7, 8] has a limited range of validity (zm ≤ zh(1 − v2)1/4

for a given v, or equivalently, v ≤ vm for a given zm), arising from the condition that

the electric field F0x needed to keep the string endpoint moving at constant speed does

not exceed its critical value at zm, F crit
0x = (

√
λ/2π)h(zm)(zh/zm)2. This critical electric

field is thus equivalent to the maximal attainable drag force, Fdrag(vm). The fact that it

agrees with the right-hand side of (5.14), then, is not surprising, because, by definition,

Fext(0) encodes the force needed to pull apart the endpoints of a zero-size string at z = zm,

i.e., the value of F crit
0x . In gauge theory language, this is the force required to nucleate a

quark-antiquark pair.

For L > zm/2, the potential is screened and deviates significantly from the lin-

ear form (5.12). Its behavior is shown in figure 13. As can be seen there, the lo-

cation of the screening lengths L∗ and Lmax shift to the left with increasing zm (e.g.,

for zm/zh = 0, 0.2, 0.4, 0.75 we respectively find πTL∗ = 0.755, 0.746, 0.707, 0.511 and

πTLmax = 0.865, 0.861, 0.828, 0.616).
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Figure 13: Quark-antiquark potential (in units of T
√
λ/4) in the static finite-mass case, for

zm/zh = 0.001 (red), 0.2 (light green), 0.3 (orange), 0.4 (light blue), 0.5 (blue) and 0.75 (purple).

The separation L is given in units of 1/2πT . See the main text for discussion.

Let us now go on to consider the case where the quark-antiquark pair moves through

the plasma. For simplicity, as in [28] we will restrict ourselves to the case where the

motion is perpendicular to the dipole axis (other angles have been studied in [32, 36, 27]).

Orienting the former along x and the latter along y, the expression for the q-q̄ separation

can be copied directly from eq. (37) of [28]. It is given by

L(fy, v) =
fy

2πT

∫ hm

hmin

dh

(1 − h)
1

4

√

(h− v2)h− (1 − h)hf2
y

, (5.15)

where

fy ≡ z2
hΠz

y =
2

π
√
λT 2

Fy

is a rescaled version of the force Fy needed to hold the quark and antiquark in place, h(z)

is the function appearing in the metric (2.1),

hmin ≡ h(zmax) =
v2 + f2

y

1 + f2
y

, (5.16)

and we have taken into account the finiteness of the quark Lagrangian mass m by changing

the upper limit of the integration range from 1 to hm ≡ h(zm). The form of expres-

sion (5.15) reflects the fact that, in spite of its motion with respect to the black hole,

the string remains completely vertical, in contrast with the trailing configuration studied

in [7, 8]. In the gauge theory, this translates into the interesting property that, unlike

isolated quarks, mesons feel no drag [31, 32, 28].

Similarly, the energy of the q-q̄ pair in its rest frame13 can be read from eq. (38) of [28]

as

E(fy, v) =
T
√
λ

4

[
∫ hm

hmin

dh(h − v2)γ

(1 − h)
5

4

√

(h− v2)h− (1 − h)hf2
y

−
∫ hm

0

dh

(1 − h)
5

4

]

. (5.17)

13For a discussion of subtleties in the calculation of the pair energy in the rest frame of the plasma,

see [28].
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Figure 14: Quark-antiquark energy (in units of T
√
λ/4) as a function of separation (in units of

1/2πT ), for (a) fixed v = 0.45 and zm = 0 (black), 0.2 (red), 0.25 (orange), 0.5 (light green), and

0.75 (green); (b) fixed zm = 0.2 and v = 0 (black), 0.2 (red), 0.4 (orange), 0.6 (light green), 0.8

(green) and 0.9 (bright green). See text for discussion.

The second term in this expression represents the energy of two disjoint strings trailing

their boundary endpoints as in [7, 8], dual to an unbound quark and antiquark (which do

experience a drag force). This contribution is subtracted in order for E = 0 to correspond

to the energy beyond which the system would become unbound.

Carrying out the integrals in (5.15) and (5.17) numerically, one obtains plots for the

potential such as those shown in figure 14. For small separation the behavior is again

linear,

E(L) =

√
λ

π



−
(

1

zm
− 1

zh

)

+
Lγ

2z2
m

√

1 −
(

zm
zh

)4

− v2 + O
(

(

L

zm

)2
)



 . (5.18)

The two terms in this expression have the same interpretation as was given for (5.12) in

the paragraph surrounding (5.13)–(5.14).

From figure 14 one also sees that the value of zm has an effect on the location of the

screening lengths L∗, Lmax (and the velocity beyond which L∗ = Lmax). The behavior at

fixed v and varying zm shown in figure 14a is qualitatively the same as we saw already for

the static configuration in figure 13. The dependence at fixed zm and varying v, which is

more relevant for the phenomenological situation, is shown in figure 14b.

In figures 15 and 16, we see that when zm/zh = 0.2, and to a lesser extent, when

zm/zh = 0.4, the screening length Lmax(v) is still relatively well approximated in the full

range 0 ≤ v ≤ vm by the natural modification of the zm = 0 fit (5.2),

Lmax(v) ≈
0.865

πTv
2/3
m

(v2
m − v2)1/3 . (5.19)

This approximation becomes worse as zm/zh is further increased. (In all cases, the fit

analogous to (5.4),

Lmax(v) ≈
0.865

πTv
1/2
m

(v2
m − v2)1/4 , (5.20)

does a poorer job than (5.19).)
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Figure 15: (a) Screening length Lmax (in units of 2πT ) as a function of velocity for zm/zh = 0.2

(in black) compared against the zm > 0 fits (5.19) (in red) and (5.20) (in light blue). (b) Expanded

version of the same plot, showing that (5.19) gives a relatively good approximation up to velocities

very close to vm, where the asymptotic linear behavior (5.21) (dotted dark blue) sets in.
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Figure 16: (a) Screening length Lmax (in units of 2πT ) as a function of velocity for zm/zh = 0.4

(in black) compared against the zm = 0 fits (5.2) (in red) and (5.4) (in light blue). (b) Expanded

version of the same plot, showing that the region in the neighborhood of vm where the asymptotic

linear behavior (5.21) (dotted dark blue) is a significantly better approximation than (5.2) has

grown larger in comparison to the zm/zh = 0.2 case depicted in figure 15.

An important difference with respect to the case where the quarks are infinitely massive

is that now the ‘ultra-relativistic’ region would refer to the limit where the pair velocity

approaches the limiting velocity vm < 1 given in (4.11) and discussed further in section 4.3.

From this alone it is clear that the asymptotic formula (5.4) no longer holds. The behavior

in this region can still be determined analytically, and turns out to be

Lmax → 1

2πT

v2
m − v2

vm(1 − v2
m)3/4

=
1

2πT

z3
h[1 − (zm/zh)4 − v2]

z3
m

√

1 − (zm/zh)4
, (5.21)

where we see that the 1/4 exponent in (5.3) changes to 1 at finite quark mass. As shown

in figures 15b and 16b, for values of zm/zh in the neighborhood of the charm mass, the

functional form (5.21) applies only for velocities extremely close to the vm endpoint. As

zm/zh is further increased, however, there is a tendency for (5.21) to apply to a larger

fraction of the 0 ≤ v ≤ vm interval.

In [32, 27], the result (5.4) for the screening length in the infinitely massive case

was turned into a tentative prediction for the dissociation temperature of charmonium
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or bottomonium traversing the quark-gluon plasma, Tdiss ∝ (1 − v2)1/4. (As reviewed in

section 4.1, for 0 ≤ v < 0.991 the exponent implied by the AdS/CFT calculation is really

closer to 1/3 than to 1/4.) The argument for this velocity scaling is heuristic, and relies on

comparing the screening length against the natural size of the bound state in question (see,

e.g., [71] and references therein). Applying the same logic to the fits (5.19) or (5.21) for the

screening length in the case of masses in the neighborhood of the charm quark (zm/zh ∼
0.2-0.4, as in figures 15–16), one would infer that Tdiss ∝ (v2

m − v2)n, with n ≃ 1/3 for

general v, and n = 1 in the v → vm limit (the latter being the preferred fit only in the

restricted range v > 0.998 or v > 0.98, depending on the value of zm).

While this paper was in preparation, the work [39] appeared, which includes an explicit

derivation of the dispersion relation for mesons, described as open string modes on the D7-

branes, following [69]. For large meson momentum p, their calculation resulted in E = vmp,

with vm the limiting velocity defined in (4.11) and discussed further in section 4.3 of the

present paper (as well as in [30], which also appeared while our work was being written

up). The authors of [39] emphasized that the zh- and zm-dependence of vm implies a

bound on the temperature at which a meson with velocity v can exist within the plasma.

Interpreting the maximal allowed temperature as a dissociation temperature, they found

the scaling Tdiss ∝ (1 − v2)1/4, just like the heuristic argument based on the potential for

infinitely-massive and ultra-relativistic quarks had suggested [32, 27].

Given the results of [28] and the present subsection, we are not quite sure what to

make of this agreement. As explained above, for finite mass the quark-antiquark potential

does not scale as (1 − v2)1/4 even in the ‘ultra-relativistic’ region (which is now v → vm).

So the fact that the heuristic argument in [32, 27] based on the potential suggests the same

scaling with velocity as the direct calculation in [27] might be a coincidence, or it might

indicate that there is a direct physical connection between the dissociation temperature and

the potential only when the latter is computed for infinitely-massive quarks. In any case,

it should be emphasized that the 1/4 scaling follows not from the detailed computation

of the dispersion relation in [27], but from the temperature-dependence of the limiting

velocity (4.11).

5.4 Screening length vs. transition distance

In figure 11 at the end of the previous section, we determined the location (xf , vf ) beyond

which a quark and antiquark created (with zero total momentum) within the plasma begin

to slow down at the asymptotic rate specified by the constant friction coefficient obtained

for an isolated quark in [7, 8]. For q-q̄ separations larger than 2xf , then, the two particles are

definitely oblivious to one another and evolve independently. It is therefore interesting to

compare the transition distance xf against (half of) the screening length Lmax determined

in the present section, which gives a measure of the minimal distance at which the quark

and antiquark can decouple.

For singlet configurations, the result of this comparison is shown in figure 17, where

we see that the two separations are of comparable magnitude and scale with velocity in
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Figure 17: (Half of) Screening length Lmax(v) (green) compared against the transition distance

xf (v) defined at the end of section 4, with zm/zh = 0.2, for f = 0.1 (red) and f = 0.05 (magenta).

The vertical axis is in units of 1/πT .

a similar manner.14 Notice that this is in spite of the fact that the two relevant string

configurations are quite different, with motion respectively along and perpendicular to the

plane in which the string extends. We conclude then that the transition to the constant-

drag-coefficient regime takes place immediately after the quark and antiquark lose contact

with one another. That is to say, unlike what we found for the forced isolated quark in

section 3.2, here there is no intermediate stage where the quark and antiquark decelerate

independently from one another at a rate that differs substantially from the asymptotic

result of [7, 8].

The initial stage, where as seen in figure 10 the quark and antiquark dissipate energy

at a rate larger than (3.10), corresponds to the period when the string has not fallen close

enough to the black hole horizon. In other words, to a first approximation, the quark

and antiquark evolve in this region as they would in the absence of the thermal plasma.

To the extent that this result, with all its simplifying assumptions, might conceivably be

extrapolated to the experimental context, this initial stage would not differ significantly

between heavy ion and proton-proton collisions.

For adjoint configurations, the quark-antiquark potential is expected to be suppressed

by a factor of 1/N2 relative to the singlet case (see, e.g., [72] and references therein).

On the string theory side of the duality, this is visible in the fact that the ‘line’ initial

conditions (4.12) can be regarded as describing two disjoint strings extending all the way

from the D7-branes to the horizon. In the classical limit where our calculations are carried

out, these two halves do not influence one another, because signals propagating between

them would have to pass through the horizon, and their splitting/joining/annihilating is

suppressed by powers of the string coupling gs, which is taken to zero. At this level of

approximation, then, the quark and antiquark do not see one another, so the relevant

‘screening length’ is Ls = 0. This is consistent with the result xf = 0 we obtained for the

adjoint case in section 4.4.

The fact that in the adjoint case the quark and antiquark evolve independently from

14A similar agreement was reported very recently in [40], which appeared while this paper was in prepa-

ration.
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the start makes this case directly comparable to our study of isolated quarks in section 3.2.

Interestingly, the corresponding results seem to point in opposite directions: whereas for

an initially static quark that is externally forced we identified a short period after release

where the quark loses energy at a rate significantly smaller than the stationary/asymptotic

rate (3.10), for a quark that is created with a certain initial velocity and gluonic field profile

and thereafter moves only under the influence of the plasma we found an initial rate of

dissipation that is somewhat larger than (3.10).

It seems, then, that the initial conditions can, to a certain extent, influence the subse-

quent evolution, which does not seem altogether surprising given the nonlinear nature of

the medium. The application of an external force in section 3.2 clearly has a significant

effect on the shape of the string at the time of release, or in other words, on the gluonic field

configuration surrounding the quark. In view of our results for quark-antiquark evolution

in this and the previous section, the initial period over which this disturbed quark behaves

unlike what one would expect based on [7 – 9] should most likely be interpreted as reflect-

ing the time it takes the quark to stabilize the gluonic fields around it, or, equivalently, to

move far enough away from the disturbed region to be effectively screened from it. In any

case, one should of course not lose sight of the fact that the actual experimental situation

resembles the setup of section 4 more closely than that of section 3.2.
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